
ON THE TENSOR PRODUCT OF WELL GENERATED DG CATEGORIES

WENDY LOWEN AND JULIA RAMOS GONZÁLEZ

Abstract. We endow the homotopy category of well generated (pretriangulated) dg ca-
tegories with a tensor product satisfying a universal property. The resulting monoidal
structure is symmetric and closed with respect to the cocontinuous RHom of dg categories
(in the sense of Toën [32]). We give a construction of the tensor product in terms of
localisations of dg derived categories, making use of the enhanced derived Gabriel-Popescu
theorem [27]. Given a regular cardinal 𝛼, we define and construct a tensor product
of homotopically 𝛼-cocomplete dg categories and prove that the well generated tensor
product of 𝛼-continuous derived dg categories (in the sense of [27]) is the 𝛼-continuous
dg derived category of the homotopically 𝛼-cocomplete tensor product. In particular, this
shows that the tensor product of well generated dg categories preserves 𝛼-compactness.

1. Introduction

The main aim of this paper is the development of a suitable tensor product for well
generated dg categories, that is, pretriangulated dg categories A for which 𝐻0 (A) is
well generated in the sense of Neeman [25]. Well generated triangulated categories were
introduced in loc. cit. as a natural class of triangulated categories sharing important prop-
erties like Brown representability with the subclass of compactly generated triangulated
categories, while at the same time having a good localisation theory (see [25] and [17]).
The derived category of a Grothendieck abelian category being well generated [24], there
is a rich supply of examples of algebro-geometric origin and in the spririt of noncommu-
tative geometry, our tensor product can be thought of as a kind of (derived) product of
noncommutative spaces.

Our starting point is the homotopy category of dg categories Hqe developed by Tabuada
[30] and Toën [32]. As shown in [32], Hqe has a monoidal structure given by the derived
tensor product of dg categories ⊗L and this monoidal structure is closed with the internal
hom (denoted by RHom) given by the dg category of (cofibrant) right quasi-representable
bimodules (also called quasi-functors).

When we restrict our attention to dg categories A,B that are (homotopically) co-
complete, it is natural to restrict to quasi-functors 𝐹 ∈ RHom(A,B) whose associated
underlying exact functor 𝐻0 (𝐹) : 𝐻0 (A) −→ 𝐻0 (B) preserves coproducts. These will be
called cocontinuous quasi-functors and they form a full dg subcategory RHomc (A,B) ⊆
RHom(A,B). We show (Corollary 3.25 and Theorem 3.31):

Theorem 1.1. Consider pretriangulated dg categories A and B.
(1) If A and B are homotopically cocomplete, the same holds for RHomc (A,B).
(2) If A and B are well generated, the same holds for RHomc (A,B).

We define the well generated tensor product of two well generated dg categoriesA and
B, if it exists, as the unique well generated dg category A � B satisfying the following
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universal property in Hqe with respect to all well generated dg categories C:

(1) RHomc (A � B, C) � RHomc (A,RHomc (B, C)).
Our main result is the existence of the well generated tensor product (see Theorem 1.3

below). In combination with Theorem 1.1 (2) we immediately obtain:

Corollary 1.2. The homotopy category Hqewg of well generated dg categories with cocon-
tinuous quasi-functors is symmetric monoidal closed.

Our approach to the existence of the tensor product makes use of the localisation theory
of well generated dg categories. More precisely, we use the (enhanced) derived Gabriel-
Popescu theorem from [27] which identifies the well generated dg categories in Hqe as
the dg quotients of dg derived categories D(𝔞) by an (enhanced) localising subcategory
W ⊆ D(𝔞) generated by a set, for small dg categories 𝔞. We show:

Theorem 1.3. LetA, B be two well generated dg categories such thatA � D(𝔞)/W𝔞 and
B � D(𝔟)/W𝔟 for small dg categories 𝔞, 𝔟 withW𝔞 ⊆ D(𝔞) andW𝔟 ⊆ D(𝔟) (enhanced)
localising subcategories generated by a set of objects. There exists an (enhanced) localising
subcategoryW𝔞 �W𝔟 ⊆ D(𝔞 ⊗L 𝔟) such that the well generated tensor product of A and
B exists and is given by the dg quotient

(2) A � B = D(𝔞 ⊗L 𝔟)/W𝔞 �W𝔟.

In particular, A � B is independent of the chosen realisations of A and B.

In the paper, we give a description ofW𝔞 �W𝔟 in terms of generators (Theorem 4.14)
as well as an intrinsic description (Theorem 4.17). We also give a description of the
well generated tensor product in terms of Bousfield localisations (Theorem 4.20) which
is specifically applied to 𝛼-continuous dg derived categories in the sense of [27] (we call
them 𝛼-cocontinuous in line with the rest of our terminology). More precisely, we show
(Theorem 5.5, Proposition 5.6, Corollary 5.7):

Theorem 1.4. Let 𝛼 be a regular cardinal. Let 𝔞, 𝔟 be two homotopically 𝛼-cocomplete
small dg categories. Then, we have that

(3) D𝛼 (𝔞) � D𝛼 (𝔟) � D𝛼 (𝔞 ⊗L
𝛼 𝔟)

in Hqewg, where 𝔞 ⊗L
𝛼 𝔟 is the homotopically 𝛼-cocomplete tensor product of 𝔞 and 𝔟.

In particular, the well generated tensor product preserves 𝛼-compactness.

Remarks 1.5.
(1) In [20], a tensor product of Grothendieck abelian categories was defined. The

precise relationship between this tensor product and the tensor product of well
generated dg categories (with t-structures) is currently under investigation in a
joint project with Francesco Genovese and Michel Van den Bergh.

(2) In contrast to the tensor product of well generated dg categories, the tensor product
of Grothendieck categories from [20] is not closed (as follows for instance from
[28, Rem 6.5]). An in depth study of the nature of morphism categories between
abelian categories is the topic of an ongoing joint project with Michel Van den
Bergh.

(3) There is well known correspondence between pretriangulated dg categories on the
one hand and stable linear infinity categories on the other hand, see for instance [8].
Since a pretriangulated dg category is well generated precisely when it is locally
presented [33, §2.1], we expect our tensor product to correspond to a natural tensor
product of presentable stable linear infinity categories. Such a tensor product can
be obtained as a linear analogue of the tensor product of presentable stable infinity
categories from [22, 23]. The details of such a monoidal correspondence remain
to be elucidated.
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2. The homotopy category of dg categories

We fix a commutative ground ring 𝑘 throughout the paper.
Let 𝔘 be a fixed (Grothendieck) universe. Without further notice, categories are 𝔘-

categories, small categories are 𝔘-small categories and cocomplete categories are 𝔘-
cocomplete (i.e. have all 𝔘-small colimits) etc. In the sequel, making use of the universe
axiom, we will sometimes use additional universes 𝔘 ∈ 𝔙 and 𝔙 ∈ 𝔚, which will be made
explicit in the terminology and notation.

In this chapter, we revise the essential aspects of the homotopy theory of dg categories
that will be used further on.

2.1. The model structure on the category of dg categories. We denote by 𝐶 (𝑘) =

𝔘−𝐶 (𝑘) the category of cochain complexes of𝔘-small 𝑘-modules with cochain morphisms.
The category dgcat𝑘 = 𝔘−dgcat𝑘 of𝔘-small dg categories over 𝑘 with 𝑘-linear dg functors
has a standard model structure with the quasi-equivalences as weak equivalences [30]. This
model structure has the following properties.

Proposition 2.1. [32, Prop 2.3] Consider dgcat𝑘 with the standard model structure. The
following hold:

(1) Any object in dgcat𝑘 is fibrant;
(2) There exists a cofibrant replacement 𝑄 : dgcat𝑘 −→ dgcat𝑘 such that the natural

morphism 𝑄(A) −→ A is the identity on objects;
(3) If A is cofibrant in dgcat𝑘 and 𝐴, 𝐴′ ∈ A then A(𝐴, 𝐴′) is cofibrant in 𝐶 (𝑘) for

the projective model structure.

We denote by Hqe = 𝔘 − Hqe = Ho(𝔘 − dgcat𝑘 ) the homotopy category of 𝔘-small
dg categories. Given a dg functor 𝐹 : A −→ B, we denote by [𝐹] its image in Hqe
and as usual we denote by [−,−] = 𝔘 − [−,−] = 𝔘 − Hqe(−,−) the set of morphisms in
Hqe. Observe that an element 𝑓 ∈ [A,B] induces a functor 𝐻0 ( 𝑓 ) : 𝐻0 (A) −→ 𝐻0 (B)
between the corresponding 𝐻0-categories.

2.2. The monoidal structure on the homotopy category of dg categories. Let C be a
small dg category and dgMod(C) the dg category of all dg modules (that is, dg functors
from Cop to 𝐶 (𝑘)). We denote by D(C) the dg derived category of C, that is the full
dg subcategory D(C) ⊆ dgMod(C) of the cofibrant dg modules for the projective model
structure on dgMod(C) (see for example [32, §3], where the dg derived category of C is
denoted by 𝐼𝑛𝑡 (C)). By construction, 𝐻0 (D(C)) is equivalent to the derived category D(C)
of C [14, Prop 3.1].

The homotopy category of dg categories Hqe can be endowed with a closed symmetric
monoidal structure, described by Toën in [32, §6]. In particular, given A,B, C small dg
categories, in Hqe we have the adjunction
(4) [A ⊗L B, C] � [A,RHom(B, C)] .
between the derived tensor product A ⊗L B and Toën’s internal RHom(B, C), which can
be constructed as follows.
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Let A and B be small dg categories. A bimodule 𝐹 ∈ dgMod(B ⊗L Aop) induces a
dg functor Φ𝐹 : A −→ dgMod(B), and it is called right quasi-representable provided
that the induced 𝐻0 (Φ𝐹 ) : 𝐻0 (A) −→ 𝐻0 (dgMod(B)) factors through a functor 𝐻0 (𝐹) :
𝐻0 (A) −→ 𝐻0 (B). In other words, for all 𝐴 ∈ A, Φ𝐹 (𝐴) ∈ dgMod(B) is quasi-
representable, that is, quasi-isomorphic to a representable dg B-module. We will denote
by qrep(B) the full dg subcategory of dgMod(B) with as objects the quasi-representable
objects. In particular, the dg Yoneda embedding 𝑌B : B −→ dgMod(B) induces a quasi-
equivalence B −→ qrep(B).

We denote by RHom(A,B) ⊆ D(B ⊗LAop) the full dg subcategory of (cofibrant) right
quasi-representable bimodules. This category is not small, but essentially small, and hence
can still be considered as an element of Hqe (see [32]). In the literature, the elements of
the category 𝐻0 (RHom(A,B)) are usually called quasi-functors between A and B (see,
for example [14]). Given 𝐹 ∈ RHom(A,B), we denote the same element considered in
𝐻0 (RHom(A,B)) also by 𝐹 and we will refer to both objects as quasi-functors.

In particular, the adjunction from (4) above can easily be extended (see for example [6,
Cor 4.1]) to the following isomorphism in Hqe:

(5) RHom(A ⊗L B, C) � RHom(A,RHom(B, C)).
Concretely, the isomorphism (5) is given by sending 𝐹 ∈ RHom(A ⊗L B, C) to the
associated dg functor

A −→ dgMod(C ⊗L Bop) : 𝐴 ↦−→ 𝐹𝐴

with 𝐹𝐴(𝐵,𝐶) B 𝐹 (𝐴, 𝐵, 𝐶). Then 𝐹𝐴 is right quasi-representable, and the resulting
A −→ RHom(B, C) gives rise to a representable element in RHom(A,RHom(B, C)).

In addition, we have the following result, relating the morphisms in Hqe and the internal
hom of the monoidal structure.

Proposition 2.2 ([32, Cor 4.8]). Let A,B be two small dg categories. There exists a
functorial bĳection between the set [A,B] of maps between A and B in Hqe and the set
Iso(𝐻0 (RHom(A,B))) of isomorphism classes of quasi-functors.

Consider small dg categories A and B and 𝐹 ∈ [A,B]. By Yoneda’s Lemma, if 𝐹
induces a bĳection 𝐹 ◦ − : [C,A] � [C,B] for every small dg category C, it follows that
𝐹 is an isomorphism in Hqe. In the sequel, we will need the following refinement:

Proposition 2.3. Consider dg 𝔘-categoriesA and B and let 𝔙 be a universe such thatA
and B are 𝔙-small. We consider the homotopy category 𝔙−Hqe of 𝔙-small dg categories
and 𝐹 ∈ 𝔙 − [A,B]. If 𝐹 induces a bĳection 𝐹 ◦ − : 𝔙 − [C,A] � 𝔙 − [C,B] for every
𝔘-small dg category C, it follows that 𝐹 is an isomorphism in 𝔙 − Hqe.

Proof. We may suppose that 𝐹 is given by a dg functor 𝐹 : A −→ B. Suppose that 𝐹
induces a bĳection 𝐹 ◦ − : 𝔙 − [C,A] � 𝔙 − [C,B] for every 𝔘-small dg category C.
We are to show that 𝐹 is a quasi-equivalence.

We start by showing that 𝐹 is quasi-essentially surjective. Consider the dg category
𝑘 with a single object ∗ and 𝑘 (∗, ∗) = 𝑘 . It is readily seen that there is a natural quasi-
equivalence A � 𝔙 − RHom(𝑘,A) for every 𝔙-small dg category A and hence by
Proposition 2.2 a natural bĳection 𝔙 − [𝑘,A] � Iso(𝐻0 (A)). Hence, by the assumption
(for C = 𝑘) 𝐹 induces a bĳection Iso(𝐻0 (A)) −→ Iso(𝐻0 (B)) as desired.

Next we show that 𝐹 is quasi-faithful. Consider

𝐻𝑛 (𝐹𝐴,𝐴′) : 𝐻𝑛A(𝐴, 𝐴′) −→ 𝐻𝑛B(𝐹 (𝐴), 𝐹 (𝐴′))
and 𝑓 ∈ 𝑍𝑛A(𝐴, 𝐴′) with 𝐻𝑛 (𝐹𝐴,𝐴′) ( [ 𝑓 ]) = 0 ∈ 𝐻𝑛B(𝐹 (𝐴), 𝐹 (𝐴′)). Consider the
dg category Ar𝑛 with two objects 𝑋, 𝑋 ′ and Ar𝑛 (𝑋, 𝑋) = 𝑘1𝑋 , Ar𝑛 (𝑋 ′, 𝑋 ′) = 𝑘1𝑋 ′ ,
Ar𝑛 (𝑋, 𝑋 ′) = 𝑘𝑥 for 𝑥 in degree 𝑛, Ar𝑛 (𝑋 ′, 𝑋) = 0. Consider the dg functor 𝜙 : Ar𝑛 −→
A : 𝑥 ↦−→ 𝑓 . We have 𝐹𝜙(𝑥) = 𝑑 (ℎ) for some ℎ ∈ B(𝐹 (𝐴), 𝐹 (𝐴′))𝑛−1. Consider the dg
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functors 𝜓1 : Ar𝑛 −→ A : 𝑥 ↦−→ 0𝐴,𝐴′ and 𝜓2 : Ar𝑛 −→ B : 𝑥 ↦−→ 0𝐹 (𝐴) ,𝐹 (𝐴′) for the
zero morphisms 0𝐴,𝐴′ ∈ A(𝐴, 𝐴′)𝑛 and 0𝐹 (𝐴) ,𝐹 (𝐴′) ∈ B(𝐹 (𝐴), 𝐹 (𝐴′))𝑛. We claim that
[𝐹𝜙] = [𝐹] [𝜙] = [𝜓2] in [Ar𝑛,B]. Let P(B) be the path object dg category for B as
described in [6, §2.2]. Then it is readily seen that a homotopy between 𝐹𝜙 and 𝜓2 is given
by

𝐻 : Ar𝑛 −→ P(B)
with

𝐻 (𝑋) = (𝐹 (𝐴), 𝐹 (𝐴), 1𝐹 (𝐴) )
𝐻 (𝑋 ′) = (𝐹 (𝐴′), 𝐹 (𝐴′), 1𝐹 (𝐴′) )
𝐻 (𝑥) = (𝐹 ( 𝑓 ), 0𝐹 (𝐴) ,𝐹 (𝐴′) , (−1)𝑛−1ℎ)

Since also [𝐹𝜓1] = [𝐹] [𝜓1] = [𝜓2] it follows from the assumption (for C = Ar𝑛) that
[𝜙] = [𝜓1] ∈ [Ar𝑛,A] and consequently [ 𝑓 ] = 0 ∈ 𝐻𝑛A(𝐴, 𝐴′) as desired.

Finally we show that𝐹 is quasi-full. Thanks to the bĳection Iso(𝐻0 (A)) −→ Iso(𝐻0 (B)),
it suffices to show that for all 𝐵, 𝐵′ ∈ B, there exist 𝐴, 𝐴′ ∈ A and isomorphisms 𝐵 � 𝐹 (𝐴)
and 𝐵′ � 𝐹 (𝐴′) in𝐻0B such that𝐻𝑛A(𝐴, 𝐴′) −→ 𝐻𝑛B(𝐹 (𝐴), 𝐹 (𝐴′)) is an isomorphism
for every 𝑛. So let 𝐵, 𝐵′ ∈ B. Consider the full dg subcategory 𝜄 : B0 ⊆ B spanned by the
objects 𝐵 and 𝐵′ and let 𝑄 : 𝑄(B0) −→ B0 be a cofibrant resolution which is the identity
on objects. By the assumption (for C = 𝑄(B0)), there exists a dg functor𝐺 : 𝑄(B0) −→ A
with [𝐹] [𝐺] = [𝐹𝐺] = [𝜄𝑄] ∈ [𝑄(B0),B]. It follows that

𝐻𝑛 (𝐹𝐺 (𝐵) ,𝐺 (𝐵′) ) : 𝐻𝑛A(𝐺 (𝐵), 𝐺 (𝐵′)) −→ 𝐻𝑛B(𝐹 (𝐺 (𝐵)), 𝐹 (𝐺 (𝐵′)))
is surjective as desired. �

2.3. Variations upon the inner hom. Consider dg 𝔘-categories A and B. For universes
𝔙 ⊆ 𝔙′ such that A and B are 𝔙-small, there is easily seen to be a quasi-equivalence
𝔙−RHom(A,B) � 𝔙′−RHom(A,B). Hence, we will often omit the decoration 𝔙 from
the notation and simply write RHom(A,B) where it is understood that we make use of
some universe for which the categories under considerations are small. If A is 𝔘-small,
then RHom(A,B) is seen to be a dg 𝔘-category.

For 𝐹 ∈ RHom(A,B), we have an induced functor 𝐻0 (𝐹) : 𝐻0 (A) −→ 𝐻0 (B). We
will consider several full subcategories of RHom(A,B) determined by properties of the
functors 𝐻0 (𝐹).

Given a universe 𝔘, its cardinality |𝔘| is the unique inaccessible (and hence regular)
cardinal such that 𝔘 = 𝑉|𝔘 | where, for a cardinal 𝜅, 𝑉𝜅 = {𝑋 | |𝑋 | < 𝜅} - consisting of all
the 𝜅-small sets - denotes the 𝜅th-level of the von Neumann hierarchy (see [34]). Observe
that, for 𝔘 ∈ 𝔙, we have that |𝔘| < |𝔙| and hence |𝔘| is a |𝔙|-small cardinal.

Definition 2.4. Let C be a dg 𝔘-category.
(1) Let 𝛼 be a cardinal. We say that C is homotopically 𝛼-cocomplete if 𝐻0 (A) has

all 𝛼-small coproducts.
(2) We say that C is homotopically cocomplete if C is homotopically |𝔘|-cocomplete,

that is, 𝐻0 (A) has all 𝔘-small coproducts.

Definition 2.5. Consider dg 𝔘-categories A and B.
(1) Let 𝛼 be a cardinal. A quasi-functor 𝐹 ∈ RHom(A,B) is called 𝛼-cocontinuous if

the induced functor 𝐻0 (𝐹) : 𝐻0 (A) −→ 𝐻0 (B) preserves all 𝛼-small coproducts.
We let

RHom𝛼 (A,B) ⊆ RHom(A,B)
denote the full dg subcategory of 𝛼-cocontinuous quasi-functors.

(2) A quasi-functor 𝐹 ∈ RHom(A,B) is called cocontinuous if it is |𝔘|-cocontinuous,
that is if the induced functor 𝐻0 (𝐹) : 𝐻0 (A) −→ 𝐻0 (B) preserves all 𝔘-small
coproducts. We put

RHomc (A,B) = RHom |𝔘 | (A,B).
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Next we look at annihilation of classes of objects.

Definition 2.6. Consider dg categories A,B and let N ⊆ Ob(A) be a class of objects.
We say that 𝐹 ∈ RHom(A,B) annihilates N if the induced functor 𝐻0 (𝐹) : 𝐻0 (A) −→
𝐻0 (B) is such that 𝐻0 (𝐹) (𝑁) = 0 for every 𝑁 ∈ N . We denote by

RHomN (A,B) ⊆ RHom(A,B)
the full dg subcategory of quasi-functors annihilating N .

Remark 2.7. We will use the same terminology and notation for a full dg subcategory
A ′ ⊆ A, where it is understood that annihilation is intended with respect to the class
N = Ob(A ′).

The dg quotient B/A of a dg category B along a full dg subcategory A ⊆ B was
introduced by Keller in [13] and analysed further by Drinfeld in [9]. The dg quotient fulfills
the following universal property in Hqe:
(6) RHom(B/A, C) � RHomA (B, C),
for all C ∈ Hqe (see [31]).

Example 2.8. Let C be a small dg category and let Acdg (C) be the full dg subcategory of
dgMod(C) of acyclic dg modules, that is, the dg modules which are pointwise acyclic.The
natural composition of morphisms in Hqe

(7) D(C) −→ dgMod(C) −→ dgMod(C)/Acdg (C)
is an isomorphism, and hence it induces a morphism 𝑄 ∈ [dgMod(C),D(C)].

3. Well generated dg categories

Well-generated triangulated categories in the sense of Neeman [25] form a very important
class of triangulated categories. They enjoy very nice properties concerning for example
localisations (see [17]) and Brown representability (see [25, §8.4]), and they also appear
naturally in many contexts. In particular, derived categories of Grothendieck abelian
categories are well generated triangulated [24].

Porta shows in [27] that in the triangulated world, well generated algebraic triangulated
categories play the analogous role to the one that Grothendieck categories play in the abelian
world, in the sense that they fulfill a triangulated version of the well-known Gabriel-Popescu
theorem for Grothendieck categories [26].

In this article we will focus on the pretriangulated dg version of well generated algebraic
triangulated categories:

Definition 3.1. A pretriangulated dg category A is called well generated if the homo-
topy category 𝐻0 (A) is a well generated triangulated category. It is called 𝛼-compactly
generated for some cardinal 𝛼 if 𝐻0 (A) is 𝛼-compactly generated.

Observe that in Definition 3.1, 𝐻0 (A) is automatically algebraic as it has A as an
enhancement.

Remark 3.2. From now on, when dealing with well generated pretriangulated dg categories,
we will usually omit the term pretriangulated for the sake of brevity.

In section §3.2 we discuss the localisation theory of well generated dg categories, which
can be obtained as an enhancement of the localisation theory of well generated triangulated
categories as described for example in [17] (see §3.1). After recalling 𝛼-cocontinuous (dg)
derived categories in §3.3, in §3.4 we formulate the (enhanced) derived Gabriel-Popescu
theorem due to Porta [27]. In §3.5, we prove that the cocontinuous internal hom between
homotopically cocomplete dg categories is again homotopically cocomplete (Theorem
3.25). In §3.6, we prove the main result of this chapter: the cocontinuous internal hom
between well generated dg categories is again well generated (Theorem 3.31).
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3.1. Localisation of well generated triangulated categories. The Verdier quotient of a
triangulated category T with respect to a full triangulated subcategoryW is given by a
triangulated category T/W and an exact functor 𝑄 : T −→ T/W annihilatingW such
that any exact functor T −→ T ′ annihilatingW factors through 𝑄. In other words, we
have that the Verdier quotient T/W has the following universal property:

(8) FunTr (T /W,T ′) −◦𝑄−−−→
�

FunTr,W (T ,T ′),

where FunTr (T /W,T ′) denotes the collection of exact functors from T/W to T ′ and
FunTr,W (T ,T ′) denotes the collection of exact functors from T to T ′ that annihilateW.
On the other hand, a Bousfield localisation functor 𝐿 : T −→ T can be characterized as
the composition of a Verdier quotient 𝑄 : T −→ T/Ker(𝐿) followed by its right adjoint
T/Ker(𝐿) −→ T (see [17]).

If we restrict to the realm of well generated triangulated categories, we have that local-
ising subcategories of well generated categories which are generated by a set of objects
are again well generated, and so are the corresponding Verdier quotients [17, Thm 7.2.1].
Then, we have two equivalent approaches to the localisation of well generated triangu-
lated categories which produce again well generated triangulated categories and which are
equivalent, namely:

• Verdier quotients along localising subcategories generated by a set;
• Bousfield localisations with kernel generated by a set;

where we say that a localising subcategoryW of a well generated triangulated category T
is generated by a set if there exists a set of objects of T such that the smallest localising
subcategory containing them isW. The fact that these two approaches are equivalent can
be directly deduced from [17, Thm 7.2.1 & Prop 5.2.1].

In what follows, we analyse the induced correspondence of localisation theories in the
dg setting. But before we proceed, we make an observation on the universal properties of
the Verdier and dg quotients when we restrict to the well generated case with cocontinuous
functors.

Let T be a well generated triangulated category andW ⊆ T a localising subcategory
generated by a set. One can easily observe that under this hypothesis the quotient functor
𝑄 : T −→ T/W preserves coproducts, as it is a left adjoint between well generated
triangulated categories. It is then not hard to check that the Verdier quotient, restricted to
well generated triangulated categories, has the following universal property. Given T a
well generated triangulated category, andW ⊆ T a localising subcategory generated by a
set of objects (and hence well generated), the Verdier quotient T/W is a well generated
triangulated category such that for any well generated triangulated category T ′, one has
that

(9) FunTr,c (T /W,T ′) −◦𝑄−−−→
�

FunTr,c,W (T ,T ′),

where the subindex c indicates that we are considering the exact functors which preserve
coproducts.

In the dg realm one can check in a similar fashion, for example by means of Keller’s
construction, that if B is a well generated dg category andA ⊆ B is a dg subcategory with
𝐻0 (A) localising in 𝐻0 (B) and generated by a set, then the dg quotient B/A is also a well
generated dg category (as it is an enhancement of the Verdier quotient 𝐻0 (B)/𝐻0 (A))
and the canonical morphism 𝑄 : B −→ B/A in Hqe is cocontinuous, that is, the induced
𝐻0 (B) −→ 𝐻0 (B/A) preserves coproducts. Observe then, that for all well generated
dg categories C, the universal property of the dg quotient (6) in Hqe restricts to a quasi-
equivalence
(10) RHomc (B/A, C) � RHomc,A (B, C).

3.2. Localisation of well generated dg categories.
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3.2.1. Localising subcategories generated by a set. Let B be a well generated dg category.
Observe that in particular𝐻0 (B) is localising as a subcategory of itself and it is, as localising
subcategory, generated by a set. In addition, the intersection of localising subcategories of
𝐻0 (B) generated by a set is again such (see [11, Lem 3.2]). Consequently, for every full
triangulated subcategoryH ⊆ 𝐻0 (B) there is a smallest localising subcategory generated
by a set containing H . In particular, the poset of localising subcategories of 𝐻0 (B)
generated by a set is a complete lattice with inf𝑖W𝑖 = ∩𝑖W𝑖 and sup𝑖W𝑖 = 〈∪𝑖W𝑖〉,
where 〈∪𝑖W𝑖〉 denotes the smallest localising subcategory that contains ∪𝑖W𝑖 . Observe
that 〈∪𝑖W𝑖〉 is indeed generated by a set, taking for example ∪𝑖N𝑖 where, for every 𝑖,N𝑖 is
a set such that 〈N𝑖〉 =W𝑖 .

Definition 3.3. ConsiderH ⊆ 𝐻0 (B) and 𝐵 ∈ B. A filtration of 𝐵 consists of a countable
collection (𝑋𝑖)∞𝑖=0 of objects in 𝐻0 (B) with 𝑋0 = 0 and maps 𝑥𝑖 : 𝑋𝑖 −→ 𝑋𝑖+1 for all 𝑖 ≥ 0
such that hocolim(𝑋𝑖) = 𝐵. A filtration (𝑋𝑖)∞𝑖=0 of 𝐵 is called anH -filtration if the cone of
each 𝑥𝑖 : 𝑋𝑖 −→ 𝑋𝑖+1 belongs toH and in this case 𝐵 is calledH -filtered.

Proposition 3.4. LetW be a localising subcategory of 𝐻0 (B) generated by a set. Then,
there exists a set N generatingW (i.e. W = 〈N〉) such that 𝑋 ∈ 𝐻0 (B) belongs toW if
and only if it is N -filtered, where N is the class of small coproducts of elements in N .

Proof. By [17, Thm 7.2.1], we know we can take a regular cardinal 𝛼 such thatW and
𝐻0 (B) are both 𝛼-compactly generated. In particular, the class of 𝛼-compact objects
W𝛼 =W∩B𝛼 is essentially small (see [25, Prop 3.2.5, Lem 4.4.5]). TakeN to be the set
of objects inW consisting of taking for each isomorphism class ofW𝛼 a representative.
We have that W = 〈N〉. By applying [25, Lemma B.1.3] to W, we know that every
𝑋 ∈ W is N -filtered. On the other hand, asW is localising, every N -filtered object 𝑋 in
𝐻0 (B) belongs toW, which concludes the argument. �

We describe now the relation with orthogonal complements.
LetT be a triangulated category. Recall that an object 𝑋 ∈ T is said to be left orthogonal

to an object 𝑌 ∈ T (or 𝑌 right orthogonal to 𝑋) if T (𝑋,𝑌 ) = 0 and we denote this by
𝑋 ⊥ 𝑌 . For a full subcategory H ⊆ T , we obtain the following 𝑘-linear subcategories of
T :

• H⊥ = {𝑋 ∈ T | 𝐻 ⊥ 𝑋 for all 𝐻 ∈ H}
• ⊥H = {𝑋 ∈ T | 𝑋 ⊥ 𝐻 for all 𝐻 ∈ H}

Remark 3.5. This notation for the right and left orthogonals is the most common in the
literature, though it is not standard. For example, the notation in [25] is reversed (see [25,
Def 9.1.10 & 9.1.11]).

Proposition 3.6. Let W be a localising subcategory of B generated by a set N , i.e.
W = 〈N〉. Then we have thatW⊥ = N⊥.

Proof. We have that N ⊆ W, hence W⊥ ⊆ N⊥. On the other hand, we have that
N ⊆ ⊥ (N⊥) and ⊥ (N⊥) is easily seen to be a localising (hence triangulated) subcategory
[25, Lem 9.1.12]. Hence we have that W = 〈N〉 ⊆ ⊥ (N⊥). Then, applying right
orthogonals and the fact thatN⊥ = ( ⊥ (N⊥))⊥, we obtain thatN⊥ ⊆ W⊥, which concludes
the argument. �

3.2.2. Bousfield localisations.

Definition 3.7. Given two pretriangulated dg categories A, B and two right quasi-
representable functors 𝐹 ∈ RHom(A,B), 𝐺 ∈ RHom(B,A), we say that 𝐹 is left
quasi-adjoint to 𝐺 if and only if 𝐻0 (𝐹) a 𝐻0 (𝐺). In this case we write 𝐹 a𝐻 0 𝐺.

Definition 3.8. Let A,B be pretriangulated dg categories and 𝑖 : B −→ A a quasi-fully
faithful dg functor. We say that 𝑖 ∈ RHom(B,A) is a dg Bousfield localisation of A if
𝐻0 (𝑖) : 𝐻0 (B) ↩→ 𝐻0 (A) admits a left adjoint.
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Remark 3.9. This definition is seen to be equivalent to the following definition: 𝑖 : B −→ A
is a dg Bousfield localisation if and only if there exists a right quasi-representable functor
𝑎 ∈ RHom(A,B) which is left adjoint to 𝑖 ∈ RHom(B,A) in the sense of adjoint pairs of
quasi-functors from [10]. Obviously, this second definition implies the first. On the other
hand, if 𝐻0 (𝑖) has a left adjoint 𝐹 : 𝐻0 (A) −→ 𝐻0 (B), then we have an isomorphism

𝐻0 (B)(𝐹 (𝐴),−) � 𝐻0 (𝑖(𝐴,−))
for all 𝐴 ∈ A, where we consider 𝑖 in dgMod(A ⊗L Bop). This isomorphism is, by Yoneda
lemma, determined by an element 𝑓 ∈ 𝐻0 (𝑖(𝐴, 𝐹 (𝐴))). Consider 𝑔 a closed element of
degree 0 in 𝑖(𝐴, 𝐹 (𝐴)) lifting 𝑓 . By dg Yoneda lemma, 𝑔 induces a morphism

B(𝐹 (𝐴),−) −→ 𝑖(𝐴,−)
which is a quasi-isomorphism because it is a lift of the previous 0th-cohomology isomor-
phim, and both A and B are pretriangulated. This shows that 𝑖 is left quasi-representable
as a bimodule and hence it admits a left adjoint 𝑎 ∈ RHom(A,B) as a consequence of [10,
Prop 7.1]. In particular, by unicity of adjoints, we have that 𝐻0 (𝑎) � 𝐹.

Observe this implies, in particular, that dg Bousfield localisations have left quasi-
adjoints.

Remark 3.10. Fix the same notations as in Remark 3.9. As a direct consequence of the
theory of adjunctions of quasi-functors from [10, §6], there exist morphisms IdA −→ 𝑖⊗L

B 𝑎

in 𝐻0 (RHom(A,A)) ⊆ D(A ⊗ Aop) and 𝑎 ⊗L
A 𝑖 −→ IdB in 𝐻0 (RHom(B,B)) ⊆

D(B ⊗ Bop), called the unit and counit of the adjunction respectively, where ⊗L is the
composition of bimodules, which preserves right quasi-representability (see [12, §6.1]).
Observe that in our particular situation the counit 𝑎 ⊗L

A 𝑖 −→ IdB is an isomorphism
in 𝐻0 (RHom(A,A)) and hence 𝑎 ⊗L

A 𝑖 and IdB are quasi-isomorphic in RHom(B,B).
Moreover, notice that 𝑎 is cocontinuous, i.e. it belongs to RHomc (A,B).
Remark 3.11. Observe that a dg Bousfield localisation induces a classical Bousfield local-
isation of the corresponding underlying triangulated category.

3.2.3. Equivalent approaches to localisation. When we restrict to the world of well gen-
erated triangulated categories, there is a nice correspondence between localising subcate-
gories and Bousfield localisation, as we have pointed out at the beginning of §3.1. This
result can be easily enhanced to the dg realm. In particular, for a well generated dg category
B, there is a poset isomorphism between:

(1) The poset𝑊dg of localising subcategories of 𝐻0 (B) generated by a set, ordered by
inclusion;

(2) The opposite poset (𝐿dg)op of the poset 𝐿dg of Bousfield localisations of B with
kernel of the left adjoint (at the 0th-cohomology level) generated by a set, ordered
by inclusion, i.e. we write 𝑖 ⊆ 𝑖′ if and only if Im(𝑖) ⊆ Im(𝑖′) as sub-dg-categories,
where Im(𝑖) denotes the quasi-essential image of 𝑖.

The poset isomorphism is described as follows:
(1) LetW be a localising subcategory of 𝐻0 (B) generated by a set. In particular, we

have thatW⊥ ⊆ 𝐻0 (B) has a left adjoint and hence gives rise to a localisation
functor

𝐻0 (B) −→W⊥ −→ 𝐻0 (B),
such that the compositionW⊥ ↩→ 𝐻0 (B) → 𝐻0 (B)/W is an equivalence and
W⊥ is well generated (see [17, Prop 7.2.1, Prop 5.2.1 & Prop. 4.9.1]).

Denote by LW the full dg subcategory of B obtained as an enhancement of
W⊥ ⊆ 𝐻0 (B) via the natural enhancement of 𝐻0 (B). We have that LW is a
well generated dg category, and that 𝐹 : 𝐻0 (B) −→ 𝐻0 (B)/W � W⊥ is a left
adjoint of 𝐻0 (𝑖) : 𝐻0 (LW) ⊆ 𝐻0 (B), where 𝑖 denotes the embedding LW ⊆ B.
In addition, Ker(𝐹) =W, which is generated by a set of objects.
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To eachW ∈ 𝑊dg we assign the so constructed LW ∈ 𝐿dg.
(2) Let 𝑖 : B −→ A be a Bousfield localisation of a well generated dg category A

such that the kernel of the left adjoint 𝐹 of 𝐻0 (𝑖) is generated by a set of objects.
Observe that Ker(𝐹) is a localising subcategory of 𝐻0 (B). We putWL = Ker(𝐹).

We assign to L ∈ 𝐿dg the so constructedWL ∈ 𝑊dg.

3.3. The 𝛼-cocontinuous derived category. In this section we recall the 𝛼-cocontinuous
derived category of an 𝛼-cocomplete dg category from [27] (note that in loc. cit it is called
the “𝛼-continuous derived category”).

Definition 3.12. [27, §6] Let C be a homotopically 𝛼-cocomplete small dg category. The
𝛼-cocontinuous derived category D𝛼 (C) is defined as the full subcategory of D(C) with
objects given by the dg functors 𝑋 such that for every 𝛼-small family of objects {𝐴𝑖}𝑖∈𝐼
the canonical morphism

(11) 𝐻𝑛 (𝑋) ©­«
𝐻 0 (C)∐

𝑖

𝐴𝑖
ª®¬ −→

∏
𝑖

𝐻𝑛 (𝑋) (𝐴𝑖)

is invertible for all 𝑛 ∈ Z, where
𝐻 0 (C)∐

𝑖

𝐴𝑖 denotes the coproduct taken in 𝐻0 (C).

Remark 3.13. Observe that, in particular, the representable dg modules belong to D𝛼 (C).

Remark 3.14. In addition, one can give an equivalent definition of D𝛼 (C) as a Verdier
quotient of D(C) with respect to the localising subcategory N generated by the cones of
the morphisms

(12) {𝜎𝜆 :
∐
𝑖∈𝐼

ℎ𝐶𝑖
→ ℎ∐𝐻0 (C)

𝑖∈𝐼 𝐶𝑖

}𝜆,

where 𝜆 varies in the set of all 𝛼-small families {𝐶𝑖}𝑖∈𝐼 of objects of C.

Definition 3.15. We call the natural enhancement of D𝛼 (C) via the enhancement D(C) of
D(C) the 𝛼-cocontinuous derived dg category of C. We will denote it by D𝛼 (C).

There is an equivalent construction of D𝛼 (C) in Hqe as a dg quotient. Indeed, we have
that for the dg quotient D(C)/N ′, whereN ′ is the natural enhancement ofN above via the
enhancement D(C) of D(C), the natural composition of morphisms in Hqe

(13) D𝛼 (C) −→ D(C) −→ D(C)/N ′

is an isomorphism. This induces a morphism𝑄𝛼 ∈ [D(C),D𝛼 (C)]. In particular, we have
the following

Theorem 3.16 ([27, Thm 6.4]). Let 𝔞 be a homotopically 𝛼-cocomplete small dg category.
Then D𝛼 (𝔞) is 𝛼-compactly generated by the images of the free dg modules {𝔞(−, 𝐴)}𝐴∈𝔞
through the localisation functor D(𝔞) −→ D𝛼 (𝔞).

3.4. Enhanced derived Gabriel-Popescu theorem. In [27], Porta proved a derived ver-
sion of the Gabriel-Popescu theorem, showing that a triangulated category T is well
generated and algebraic if and only if there exists a small dg category 𝔞 such that T is
triangle equivalent to the Verdier quotient of D(𝔞) by a localising subcategory generated by
a set. Further, T is 𝛼-compactly generated and algebraic if and only if there exists a small
homotopically 𝛼-cocomplete dg category 𝔞 such that T is triangle equivalent to D𝛼 (𝔞).

We are interested in enhanced versions of these results, which can easily be deduced
making use of the higher observations (see also [7]).

Theorem 3.17. Let C be a pretriangulated dg category.
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(1) C is well generated if and only if there exists a small dg category 𝔞 such that
C � D(𝔞)/W in Hqe, whereW is the enhancement of a localising subcategory
of D(𝔞) generated by a set.

(2) C is 𝛼-compactly generated if and only if there exists a small homotopically 𝛼-
cocomplete dg category 𝔞 such that C � D𝛼 (𝔞) in Hqe.

From Theorem 3.17, one deduces (see [33, §3.1]):

Corollary 3.18. Let C be a pretriangulated dg category. Then C is well generated if and
only if C is locally presentable in the sense of [33].

3.5. The cocontinuous internal hom of homotopically cocomplete dg categories. In
this section we prove that given a 𝔘-small dg category 𝔟, and a well generated 𝔙-small dg
category C with a 𝔘-small set of generators, the internal hom RHom(𝔟, C) in 𝔙−Hqe is a
well generated dg category as well. As a consequence of this result, we prove that for any
two 𝔘-small dg categories 𝔞, 𝔟 with 𝔟 homotopically 𝔘-cocomplete (resp. 𝛼-cocomplete)
the internal hom RHom(𝔞, 𝔟) is also homotopically 𝔘-cocomplete (resp. 𝛼-cocomplete) in
𝔘 − Hqe, while if also 𝔞 is homotopically 𝔘-cocomplete (resp. 𝛼-cocomplete), then so is
RHomc (𝔞, 𝔟) (resp. RHom𝛼 (𝔞, 𝔟)) in 𝔘 − Hqe.

We will start first with some considerations on the two variable setting.
The fact that the cofibrant replacement 𝑄 in dgcat𝑘 can be taken to be the identity on

objects, permits to define a canonical functor

𝑖𝐵 : 𝔞 −→ 𝔞 ⊗L 𝔟 = 𝔞 ⊗ 𝑄(𝔟) : 𝐴 ↦−→ (𝐴, 𝐵)
for all 𝐵 ∈ 𝔟 (see [32, §4]).

One can then consider the induced dg functor

(𝑖𝐵)∗ : dgMod(𝔞 ⊗L 𝔟) −→ dgMod(𝔞) : 𝐹 ↦−→ 𝐹 ◦ 𝑖𝐵 = 𝐹 (−, 𝐵),
sometimes called restriction of scalars. This dg functor has a left adjoint

(𝑖𝐵)! : dgMod(𝔞) −→ dgMod(𝔞 ⊗L 𝔟),
sometimes also called extension of scalars. Moreover, (𝑖𝐵)∗ preserves acyclic dg modules,
hence it induces an exact functor

(𝑖𝐵)∗ : D(𝔞 ⊗L 𝔟) −→ D(𝔞)
In addition, the left derived functor

L(𝑖𝐵)! : D(𝔞) −→ D(𝔞 ⊗L 𝔟).
is a left adjoint for (𝑖𝐵)∗ (see [21, §1]). Observe our notations for the restriction and
extension of scalars functors follow the convention from classical topos theory as in [1]
while in loc.cit. another convention is used.

Lemma 3.19. Let 𝔞 and 𝔟 be small dg categories and consider an object 𝐵 ∈ 𝔟. Then we
have that the functor L(𝑖𝐵)! � − ⊗L 𝔟(−, 𝐵).

Proof. Since L(𝑖𝐵)! is a left adjoint between well generated triangulated categories, it
preserves coproducts. Therefore, it is fully determined by its value on the representables,
as they generate D(𝔞). Consider a module 𝐹 ∈ D(𝔞 ⊗L 𝔟). Then, for any object 𝐴 ∈ 𝔞 we
have that

D(𝔞 ⊗L 𝔟) (L(𝑖𝐵)! (𝔞(−, 𝐴)), 𝐹) � D(𝔞) (𝔞(−, 𝐴), (𝑖𝐵)∗ (𝐹))
� D(𝔞) (𝔞(−, 𝐴), 𝐹 (−, 𝐵))
� 𝐻0 (𝐹 (𝐴, 𝐵))
� D(𝔞 ⊗L 𝔟) (𝔞 ⊗L 𝔟((−,−), (𝐴, 𝐵)), 𝐹)
� D(𝔞 ⊗L 𝔟) (𝔞(−, 𝐴) ⊗L 𝔟(−, 𝐵), 𝐹),
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where the first equivalence is given by the adjunction L(𝑖𝐵)! a (𝑖𝐵)∗, the second by definition
of (𝑖𝐵)∗, the third and the fourth by definition of the morphisms in derived categories (see
[12, §4]) and the last one can be readily seen using Proposition 2.1. As this holds for all
𝐹 ∈ D(𝔞 ⊗L 𝔟), we conclude by Yoneda lemma. �

Lemma 3.20. Let 𝔞, 𝔟 be two small dg categories andW ⊆ D(𝔞) a localising subcategory
generated by a set. Then the triangulated subcategory

W ′ = {𝑋 ∈ D(𝔞 ⊗L 𝔟) | (𝑖𝐵)∗ (𝑋) = 𝑋 (−, 𝐵) ∈ W for all 𝐵 ∈ 𝔟}
of D(𝔞 ⊗L 𝔟) is localising and generated by a set. In particular, ifW is generated by a set
N , then we have thatW ′ is generated by the set N ′ = {L(𝑖𝐵)! (𝑁) | 𝑁 ∈ N , 𝐵 ∈ 𝔟}.

Proof. The fact that (𝑖𝐵)∗ preserves small coproducts immediately shows that W ′ is a
localising subcategory of D(𝔞 ⊗L 𝔟).

We first prove that W ′ is generated by a set (and hence well generated by [17, Thm
7.2.1]). Given an object 𝐵 ∈ 𝔟, consider the composition

D(𝔞 ⊗L 𝔟)
(𝑖𝐵)∗−−−−→ D(𝔞) 𝑄−−−→ D(𝔞)/W,

where𝑄 denotes the Verdier quotient functor. Observe that both (𝑖𝐵)∗ and𝑄 preserve small
coproducts, as they are left adjoint functors between well generated categories. Therefore,
by [17, Thm 7.4.1] we have that

Ker(𝑄 ◦ (𝑖𝐵)∗) = {𝑋 ∈ D(𝔞 ⊗L 𝔟) | (𝑖𝐵)∗𝑋 = 𝑋 (−, 𝐵) ∈ W}
is also well-generated and in particular generated by a set of objects. Notice now that, as

W ′ =
⋂
𝐵∈𝔟

Ker(𝑄 ◦ (𝑖𝐵)∗) ⊆ D(𝔞 ⊗L 𝔟),

we can apply [11, Lem 3.2] to conclude thatW ′ is also generated by a set of objects.
We now show the second part of the statement, namely, that ifW = 〈N〉 for a set N ,

thenW ′ = 〈N ′〉 with N ′ = {L(𝑖𝐵)! (𝑁) | 𝑁 ∈ N , 𝐵 ∈ 𝔟}.
We first prove that 〈N ′〉 ⊆ W ′. AsW ′ is localising, it suffices to show thatN ′ ⊆ W ′.

Let’s take 𝑋 = L(𝑖𝐵)! (𝑁) ∈ N ′. We have that 𝑋 (−, 𝐵′) = L(𝑖𝐵)! (𝑁) (−, 𝐵′) = 𝑁 (−) ⊗L

𝔟(𝐵′, 𝐵) by Lemma 3.19, and one can easily see that it belongs toW. Indeed, we have
that 𝑁 = 𝑁 (−) ⊗L 𝑘 [0] ∈ W where 𝑘 [0] ∈ D(𝑘) denotes the complex concentrated in
degree 0 with 𝑘 in the 0-term. In addition, 𝑘 [0] is a compact generator of D(𝑘), hence
𝔟(𝐵′, 𝐵) ∈ D(𝑘) can be written in terms of direct sums, extensions and shifts of 𝑘 [0].
As 𝑁 (−) ⊗L − : D(𝑘) −→ D(𝔞) commutes with all these, and W is localising, we can
conclude. Hence, we have that 〈N ′〉 ⊆ W ′.

Now we prove thatW ′ ⊆ 〈N ′〉. Observe that it suffices to show that 〈N ′〉⊥ ⊆ W ′⊥.
Indeed, if we take left orthogonals, we have that

W ′ ⊆ ⊥ (W ′⊥) ⊆ ⊥ (〈N ′〉⊥) = 〈N ′〉,
where the last equality comes from [17, Prop 4.9.1(6)] because 〈N ′〉 is a localising sub-
category generated by a set of a well generated category. Recall from Proposition 3.6 that
〈N ′〉⊥ = N ′⊥. Let’s consider 𝑋 ∈ N ′⊥. Then, we have that

0 = D(𝔞 ⊗L 𝔟) (L(𝑖𝐵)! (𝑁), 𝑋),
for all for all 𝑁 ∈ N and all 𝐵 ∈ 𝔟. Hence we have that

0 = D(𝔞 ⊗L 𝔟) (L(𝑖𝐵)! (𝑁), 𝑋) � D(𝔞) (𝑁, (𝑖𝐵)∗ (𝑋))
for all 𝑁 ∈ N and all 𝐵 ∈ 𝔟. Thus (𝑖𝐵)∗ (𝑋) = 𝑋 (−, 𝐵) ∈ N⊥ =W⊥ for all 𝐵 ∈ 𝔟. We are
going to show that this is enough to conclude that 𝑋 ∈ W ′⊥.

Observe that, becauseW ′ is a well generated subcategory of D(𝔞 ⊗L 𝔟) closed under
coproducts, by [17, Thm 5.1.1] we have thatW ′ is a right admissible subcategory [5, Def
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1.2] and 〈W ′⊥,W ′〉 is a semiorthogonal decomposition of D(𝔞⊗L 𝔟) (see for example [18,
Lem 2.5]). Therefore, we have a diagram of adjoint functors

W ′ D(𝔞 ⊗L 𝔟) W ′⊥
𝑗′ 𝑞′

𝑎′ 𝑖′

where 𝑗 ′ a 𝑎′, 𝑞′ a 𝑖′ with 𝑎′ 𝑗 ′ � 1W′ , 𝑞′𝑖′ � 1W′⊥ and furthermore ker(𝑞′) = Im( 𝑗 ′) and
ker(𝑎′) = Im(𝑖′). In particular, the projection functors associated to the semiorthogonal
decomposition as in [18, §2.2] are precisely given by 𝑖′𝑞′ : D(𝔞 ⊗L 𝔟) → D(𝔞 ⊗L 𝔟) and
𝑗 ′𝑎′ : D(𝔞 ⊗L 𝔟) → D(𝔞 ⊗L 𝔟) (see, for example, the proof of [4, Lem 3.1]). Analogously,
we have that 〈W⊥,W〉 is a semiorthogonal decomposition of D(𝔞) and thus we have a
diagram of adjoint functors

W D(𝔞) W⊥
𝑗 𝑞

𝑎 𝑖

where 𝑗 a 𝑎, 𝑞 a 𝑖 with 𝑎 𝑗 � 1W , 𝑞𝑖 � 1W⊥ and furthermore ker(𝑞) = Im( 𝑗) and
ker(𝑎) = Im(𝑖). The projection functors associated to this semiorthogonal decomposition
are 𝑖𝑞 : D(𝔞) → D(𝔞) and 𝑗𝑎 : D(𝔞) → D(𝔞). Now, observe that for all 𝐵 ∈ 𝔟 we have that
the functor (𝑖𝐵)∗ is compatible with the given semiorthogonal decompositions in the sense
of [18, §3], that is, we have that for all 𝐵 ∈ 𝔟:

• (𝑖𝐵)∗ (W ′) ⊆ W: This follows by definition ofW ′;
• (𝑖𝐵)∗ (W ′⊥) ⊆ W⊥: Let 𝑋 ∈ W ′⊥. Then, given any 𝑌 ∈ W we have that

D(𝔞) (𝑌, (𝑖𝐵)∗ (𝑋)) � D(𝔞 ⊗L 𝔟) (𝑌 ⊗L 𝔟(−, 𝐵), 𝑋) and this latter is equal to 0
because 𝑌 ⊗L 𝔟(−, 𝐵) ∈ W ′, which can be shown using the same argument as in
the proof of the inclusion 〈N ′〉 ⊆ W ′ above.

Hence, by applying [18, Lem 3.1] we have that, with the notations above

(14)
(𝑖𝐵)∗ 𝑗 ′𝑎′ � 𝑗𝑎(𝑖𝐵)∗

(𝑖𝐵)∗𝑖′𝑞′ � 𝑖𝑞(𝑖𝐵)∗.
Notice now that, because 〈W ′⊥,W ′〉 is a semiorthogonal decomposition, we have that our
initial object 𝑋 ∈ N ′⊥ ⊆ D(𝔞 ⊗L 𝔟) fits in a distinguished triangle of the form

𝑗 ′𝑎′(𝑋) −→ 𝑋 −→ 𝑖′𝑞′(𝑋) −→ 𝑗 ′𝑎′(𝑋) [1],
where the morphisms are induced by the counit and unit of the adjunctions above. If we
now apply (𝑖𝐵)∗, we obtain a distinguished triangle

(𝑖𝐵)∗ 𝑗 ′𝑎′(𝑋) −→ (𝑖𝐵)∗𝑋 −→ (𝑖𝐵)∗𝑖′𝑞′(𝑋) −→ (𝑖𝐵)∗ 𝑗 ′𝑎′(𝑋) [1] .
Observe that (𝑖𝐵)∗ 𝑗 ′𝑎′(𝑋) � 𝑗𝑎(𝑖𝐵)∗ (𝑋) for all 𝐵 ∈ 𝔟 because of (14). We showed
above that for all 𝐵 ∈ 𝔟 we have that (𝑖𝐵)∗ (𝑋) = 𝑋 (−, 𝐵) belongs to W⊥ and hence
𝑎(𝑖𝐵)∗ (𝑋) = 0. Therefore, we have that 0 = 𝑗𝑎(𝑖𝐵)∗ (𝑋) � (𝑖𝐵)∗ 𝑗 ′𝑎′(𝑋) for all 𝐵 ∈ 𝔟.
Consequently, we have that 𝑗 ′𝑎′(𝑋) = 0 and thus 𝑋 � 𝑖′𝑞′(𝑋) ∈ W ′⊥, which concludes
the argument. �

Remark 3.21. Observe that the presented proof is symmetric in the arguments, and hence
the similar statement forW ⊆ D(𝔟) a localising subcategory generated by a set holds as
well.

We are now in disposition to prove:

Theorem 3.22. Let 𝔟 be a𝔘-small dg category andC a well generated𝔙-small dg category.
Then, RHom(𝔟, C) is a well generated 𝔙-small dg category.

Proof. As C is pretriangulated by hypothesis, so is RHom(𝔟, C) for any small dg category
𝔟 (see for instance [9, Rem E.2 & E.4]).

As C is a well generated dg category, by Porta’s Gabriel-Popescu theorem, there exists
a small dg category 𝔠 such that C is a Bousfield localisation of D(𝔠), that is, there exists
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a quasi-fully faithful functor 𝑖 : C −→ D(𝔠) which has a cocontinuous quasi-left adjoint
𝐹 ∈ RHomc (D(𝔠), C).

We have that, by [32, Cor 6.6], the morphism
𝑗 : RHom(𝔟, C) −→ RHom(𝔟,D(𝔠))

induced by the dg functor 𝑖 is quasi-fully faithful as well, thus 𝐻0 ( 𝑗) is a fully-faithful
functor. Observe that, if we consider 𝑖 as a right quasi-representable bimodule and we
denote it by ℎ𝑖 (−) ∈ RHom(C,D(𝔠)), we have that 𝑗 = ℎ𝑖 (−) ⊗L

C (−). Then, the natural
bimodule 𝐹 ′ = 𝐹 ⊗L

D(𝔠) (−) ∈ RHom(RHom(𝔟,D(𝔠)),RHom(𝔟, C)) can be easily seen to
be a quasi-left adjoint of 𝑗 : RHom(𝔟, C) −→ RHom(𝔟,D(𝔠)). Indeed, we have a counit

𝐹 ′ ⊗L
RHom(B,D(𝔠)) 𝑗 = 𝐹 ⊗

L
D(𝔠) ℎ𝑖 (−) ⊗

L
C (−) −→ IdC ⊗L

C (−) = IdRHom(𝔟,C)

induced by the counit of the quasi-adjunction 𝐹 a𝐻 0 ℎ𝑖 (−) and a unit

IdRHom(𝔟,D(𝔠)) = IdD(𝔠) ⊗L
D(𝔠) (−) −→ ℎ𝑖 (−) ⊗L

C 𝐹 ⊗
L
D(𝔠) (−) = 𝑗 ⊗L

RHom(𝔟,C) 𝐹
′

induced by the unit of the quasi-adjunction 𝐹 a𝐻 0 ℎ𝑖 (−) . We thus have that 𝑗 is a dg
Bousfield localisation of RHom(𝔟,D(𝔠)), and hence

𝐻0 (RHom(𝔟, C))
𝐻 0 ( 𝑗)
−−−−−→ 𝐻0 (RHom(𝔟,D(𝔠)))

is a Bousfield localisation of 𝐻0 (RHom(𝔟,D(𝔠))).
Now observe that RHom(𝔟,D(𝔠)) � D(𝔟op ⊗L 𝔠) in Hqe as a direct consequence of

the fact that D(𝔠) � RHom(𝔠op,D(𝑘)) in Hqe (see [32, §7]). We hence have an exact
isomorphism 𝑓 : D(𝔟op ⊗L 𝔠) −→ 𝐻0 (RHom(𝔟,D(𝔠))) and it is not hard to see that every
𝑋 ∈ D(𝔟op⊗L𝔠) is sent via 𝑓 to the associated quasi-respresentable bimodule 𝑋 : 𝔟 −→ D(𝔠)
in 𝐻0 (RHom(𝔟,D(𝔠))). Consequently, via 𝑓 , we have that

D(𝔟op ⊗L 𝔠)
𝐻 0 (𝐹 ′)◦ 𝑓
−−−−−−−−→ 𝐻0 (RHom(𝔟, C))

𝑓 −1◦𝐻 0 ( 𝑗)
−−−−−−−−−→ D(𝔟op ⊗L 𝔠)

provides a Bousfield localisation of D(𝔟op ⊗L 𝔠). In addition, observe that
Ker(𝐻0 (𝐹 ′)◦ 𝑓 ) � {𝑋 ∈ D(𝔟op⊗L 𝔠) | (𝑖𝐵)∗ (𝑋) = 𝑋 (𝐵,−) ∈ Ker(𝐻0 (𝐹)) for all 𝐵 ∈ B},
where Ker(𝐻0 (𝐹)) is a localising subcategory of D(𝔠) generated by a set of objects. Then
we can conclude by Lemma 3.20 that Ker(𝐻0 (𝐹 ′) ◦ 𝑓 ) is also generated by a set of objects.
Consequently, 𝐻0 (RHom(𝔟, C)) is also well generated, as we wanted to show. �

Lemma 3.23. Consider small dg categories 𝔟, 𝔠, 𝔠′ and a quasi-fully faithful dg functor
𝜑 : 𝔠 −→ 𝔠′. Consider the induced morphism ℎ𝜑 ⊗L

𝔠 − : RHom(𝔟, 𝔠) −→ RHom(𝔟, 𝔠′).
Consider a quasi-functor 𝐹 ∈ RHom(𝔟, 𝔠′) which is such that 𝐻0 (𝐹) : 𝐻0 (𝔟) −→ 𝐻0 (𝔠′)
factors through 𝐻0 (𝜑). Then, there exists �̄� ∈ RHom(𝔟, 𝔠) such that ℎ𝜑 ⊗L

𝔠 �̄� � 𝐹 as
elements in 𝐻0 (RHom(𝔟, 𝔠′)).

Proof. Consider the first argument (derived) bimodule restriction functor 𝜑∗1 : D(𝔟op ⊗L

𝔠′) −→ D(𝔟op ⊗L 𝔠) and the first argument derived bimodule extension functor 𝐿 ((𝜑1)!) :
D(𝔟op ⊗L 𝔠) −→ D(𝔟op ⊗L 𝔠′). Let 𝐹 be as in the statement of the lemma and put
�̄� = 𝜑∗1 (𝐹). Consider the Yoneda embeddings 𝑦𝔠 : 𝐻0 (𝔠) −→ D(𝔠), 𝑦𝔠′ : 𝐻0 (𝔠′) −→ D(𝔠′),
the (derived) restriction functor 𝜑∗ : D(𝔠′) −→ D(𝔠) and the derived extension functor
𝐿 (𝜑!) : D(𝔠) −→ D(𝔠′), for which we have
(15) 𝐿 (𝜑!)𝑦𝔠 � 𝑦𝔠′𝐻0 (𝜑)
in D(𝔠op ⊗L 𝔠′). Consider 𝐹 ∈ RHom(𝔟, 𝔠′) as in the statement of the lemma. We consider
𝐹 : 𝔟 −→ D(𝔠′) and 𝐻0 (𝐹) : 𝐻0 (𝔟) −→ D(𝔠′). Since 𝐹 is a quasi-functor, there exists
𝑓 : 𝐻0 (𝔟) −→ 𝐻0 (𝔠′) with 𝐻0 (𝐹) � 𝑦𝔠′ 𝑓 (note that we usually denote 𝐻0 (𝐹) = 𝑓 for
quasi-functors, but we refrain from doing so within this proof). By assumption, there exists
𝑔 : 𝐻0 (𝔟) −→ 𝐻0 (𝔠) with
(16) 𝐻0 (𝜑)𝑔 � 𝑓 .
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Using (15) and (16), we thus have

(17) 𝐻0 (𝐹) = 𝑦𝔠′ 𝑓 � 𝑦𝔠′𝐻0 (𝜑)𝑔 � 𝐿 (𝜑!)𝑦𝔠𝑔

and

(18) 𝐻0 (�̄�) = 𝜑∗𝐿 (𝜑!)𝑦𝔠𝑔 � 𝑦𝔠𝑔

where in the last equation we have used that 𝜑 is quasi-fully faithful. Equation (18)
already shows �̄� to be a quasi-functor. Comparing the expressions (17) and (18), we
see that 𝐻0 (𝐹) � 𝐿 (𝜑!)𝐻0 (�̄�) canonically. From this, one readily deduced that the
canonical natural transformation ℎ𝜑 ⊗L

𝔠 �̄� = 𝐿 ((𝜑1)!)𝜑∗1 (𝐹) −→ 𝐹 is an isomorphism in
𝐻0 (RHom(𝔟, 𝔠′)), as desired. �

Corollary 3.24. Consider a small dg category 𝔟 and a dg category C. Let 𝛼 be a cardinal
with 𝛼 ≤ |𝔘|.

(1) If C is homotopically 𝛼-cocomplete, then so is RHom(𝔟, C). Moreover, on the
level of induced functors between the 𝐻0-categories, coproducts are pointwise: for
an 𝛼-small family (𝐹𝑖)𝑖∈𝐼 with 𝐹𝑖 ∈ 𝐻0 (RHom(𝔟, C)) with coproduct

∐
𝑖 𝐹𝑖 , the

functors 𝐻0 (𝐹𝑖), 𝐻0 (∐𝑖 𝐹𝑖) : 𝐻0 (𝔟) −→ 𝐻0 (C) are such that

𝐻0 (
∐
𝑖

𝐹𝑖) (𝐵) =
𝐻 0 (C)∐

𝑖

𝐻0 (𝐹𝑖) (𝐵).

(2) If C is homotopically cocomplete, then so is RHom(𝔟, C), and the coproducts are
pointwise on the level of induced functors between the 𝐻0-categories.

Proof. Clearly, (2) is the case 𝛼 = |𝔘| in (1). Suppose C is homotopically 𝛼-cocomplete
for 𝛼 ≤ |𝔘|. Let 𝔙 be a universe such that 𝔘 ∈ 𝔙 and C is 𝔙-small. Then 𝔙−RHom(𝔟, C)
is constructed as an essentially 𝔙-small dg category which is a 𝔘-category, and 𝛼 is a
𝔙-small cardinal. For 𝑌 𝛼

C : C −→ 𝔙−D𝛼 (C) we have a canonical morphism

𝑌 𝛼
C : RHom(𝔟, C) −→ RHom(𝔟,𝔙−D𝛼 (C))

which is quasi-fully faithful [32, Cor 6.6]. Since the codomain is 𝔙-well generated by
Theorem 3.22 and hence 𝔙-cocomplete, it suffices to show that 𝐻0 (RHom(𝔟, C)) is closed
under 𝛼-small coproducts in 𝐻0 (RHom(𝔟,𝔙−D𝛼 (C))).

Let (𝐹𝑖 ∈ RHom(𝔟, C))𝑖∈𝐼 be an 𝛼-small collection of objects. We may assume that 𝔟 is
cofibrant and that we have dg functors 𝑓𝑖 : 𝔟 −→ C with 𝐹𝑖 = 𝑌C 𝑓𝑖 for𝑌C : C −→ 𝔙−D(C).

We will consider the functors 𝐹𝛼
𝑖

= 𝑌 𝛼
C 𝑓𝑖 as representatives of the objects 𝑌 𝛼

C (𝐹𝑖) ∈
RHom(𝔟,𝔙−D𝛼 (C)) (where we refrain from writing the composition with a further Yoneda
embedding in order to obtain the associated bimodules).

Consider the canonical quotient of dg 𝔙-categories 𝑄 : 𝔙−D(C) −→ 𝔙−D𝛼 (C) and
the induced quotient

�̃� : RHom(𝔟,𝔙−D(C)) −→ RHom(𝔟,𝔙−D𝛼 (C)).

The coproduct of the objects 𝐹𝛼
𝑖
∈ 𝐻0 (RHom(𝔟,𝔙−D𝛼 (C))) is given by 𝐹 = �̃�(∐𝑖 𝐹𝑖) =

𝑄 ◦∐𝑖 𝐹𝑖 for 𝐹𝑖 ∈ 𝐻0 (RHom(𝔟,𝔙−D(C))) � 𝔙−D(𝔟op ⊗ C). By Lemma 3.23, it suffices
to show that 𝐻0 (𝐹) factors through 𝐻0 (𝑌 𝛼

C ). To see this, we compute

(19) 𝐻0 (𝐹) (𝐵) = 𝑄(
𝔙−D(C)∐

𝑖

ℎ 𝑓𝑖 (𝐵) ) =
𝔙−D𝛼 (C)∐

𝑖

ℎ 𝑓𝑖 (𝐵) � ℎ
∐

𝐻0 (C) 𝑓𝑖 (𝐵)

where we have used the characterisation of the 𝛼-cocontinuous derived category from
Remark 3.14. The computation (19) also demonstrates the additional claim. �

Corollary 3.25. Consider dg categories A and B. Let 𝛼 be a cardinal with 𝛼 ≤ |𝔘|.
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(1) IfA andB are homotopically 𝛼-cocomplete, then so is RHom𝛼 (A,B). Moreover,
on the level of induced functors between the 𝐻0-categories, the 𝛼-small coproducts
are pointwise. If in addition B is pretriangulated, then so is RHom𝛼 (A,B).

(2) If A and B are homotopically cocomplete, then so is RHomc (A,B). Moreover,
on the level of induced functors between the 𝐻0-categories, small coproducts are
pointwise. If in addition B is pretriangulated, then so is RHomc (A,B).

Proof. Again, (2) is the case 𝛼 = |𝔘| in (1). Let 𝔙 be a universe with 𝔘 ∈ 𝔙 and such that
A and B are 𝔙-small. Then 𝛼 ≤ |𝔙|. From Corollary 3.24 we know that RHom(A,B) is
homotopically 𝛼-cocomplete. In order to prove that 𝐻0 (RHom𝛼 (A,B)) is 𝛼-cocomplete
it is enough to show that it is closed under 𝛼-small coproducts in 𝐻0 (RHom(A,B)).
Consider an 𝛼-small family (𝐹𝑖)𝑖∈𝐼 in 𝐻0 (RHom𝛼 (A,B)). By Corollary 3.24, we have
that

𝐻0 ©­«
𝐻 0 (RHom(A,B))∐

𝑖

𝐹𝑖
ª®¬ ©­«

𝐻 0 (A)∐
𝑗

𝐴 𝑗
ª®¬ �

𝐻 0 (B)∐
𝑖

𝐻0 (𝐹𝑖)
©­«
𝐻 0 (A)∐

𝑗

𝐴 𝑗
ª®¬

for all 𝛼-small families (𝐴 𝑗 ) 𝑗∈𝐽 of elements of 𝐻0 (A). From the fact that the 𝐹𝑖’s are
𝛼-cocontinuous we have that
𝐻 0 (B)∐

𝑖

𝐻0 (𝐹𝑖)
©­«
𝐻 0 (A)∐

𝑗

𝐴 𝑗
ª®¬ =

𝐻 0 (B)∐
𝑗

𝐻 0 (B)∐
𝑖

𝐻0 (𝐹𝑖) (𝐴 𝑗 ) =
𝐻 0 (B)∐

𝑗

©­«𝐻0 ©­«
𝐻 0 (RHom(A,B))∐

𝑖

𝐹𝑖
ª®¬ (𝐴 𝑗 )

ª®¬ ,
which proves that

∐𝐻 0 (RHom(A,B))
𝑖

𝐹𝑖 belongs to 𝐻0 (RHom𝛼 (A,B)) as desired.
Now assume that B is pretriangulated. By [9, Rem E.2 & E.4], we know that

RHom(A,B) is also pretriangulated, with the triangulated structure inherited from that of
D(B ⊗LAop). It is then enough to show that 𝐻0 (RHom𝛼 (A,B)) ⊆ 𝐻0 (RHom(A,B)) is
a triangulated subcategory. Take 𝐹 ∈ RHom𝛼 (A,B) and consider its shift 𝐹 [1] when seen
in the triangulated category 𝐻0 (RHom(A,B)). We prove that 𝐹 [1] is 𝛼-cocontinuous.
Indeed, for any small family (𝐴𝑖)𝑖 of objects of A, we have that

(𝐻0 (𝐹) [1]) ©­«
𝐻 0 (A)∐

𝑖

𝐴𝑖
ª®¬ =

©­«𝐻0 (𝐹) ©­«
𝐻 0 (A)∐

𝑖

𝐴𝑖
ª®¬ª®¬ [1]

=
©­«
𝐻 0 (B)∐

𝑖

𝐻0 (𝐹) (𝐴𝑖)
ª®¬ [1]

=

𝐻 0 (B)∐
𝑖

(𝐻0 (𝐹) (𝐴𝑖) [1])

=

𝐻 0 (B)∐
𝑖

(𝐻0 (𝐹) [1]) (𝐴𝑖),

where in the first and last equalities we use the fact that triangulated structure in𝐻0 (RHom(A,B))
is inherited from the canonical one in D(B ⊗LAop), in the second equality we use that 𝐹 is
𝛼-cocontinuous and in the third equality we use that shifts commute with coproducts. Now
consider an exact triangle

𝐹 −→ 𝐹 ′ −→ 𝐹 ′′ −→ 𝐹 [1]
in 𝐻0 (RHom(A,B)), where 𝐹, 𝐹 ′ ∈ 𝐻0 (RHom𝛼 (A,B)). Given an 𝛼-small family (𝐴𝑖)
of elements in 𝐻0 (A), for all 𝑖 we have the exact triangle

(20) 𝐻0 (𝐹) (𝐴𝑖) 𝐻0 (𝐹 ′) (𝐴𝑖) 𝐻0 (𝐹 ′′) (𝐴𝑖) 𝐻0 (𝐹) (𝐴𝑖) [1]
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in 𝐻0 (B). Observe now that we have the following diagram with rows exact triangles:

𝐻0 (𝐹)
(
𝐻 0 (A)∐

𝑖

𝐴𝑖

)
𝐻0 (𝐹 ′)

(
𝐻 0 (A)∐

𝑖

𝐴𝑖

)
𝐻0 (𝐹 ′′)

(
𝐻 0 (A)∐

𝑖

𝐴𝑖

)
𝐻0 (𝐹)

(
𝐻 0 (A)∐

𝑖

𝐴𝑖

)
[1]

𝐻 0 (B)∐
𝑖

𝐻0 (𝐹) (𝐴𝑖)
𝐻 0 (B)∐

𝑖

𝐻0 (𝐹 ′) (𝐴𝑖)
𝐻 0 (B)∐

𝑖

𝐻0 (𝐹 ′′) (𝐴𝑖)
𝐻 0 (B)∐

𝑖

𝐻0 (𝐹) (𝐴𝑖) [1]

where the exact triangle below is the coproduct of the family of exact triangles from
(20) above, and the vertical equalities are given because both 𝐻0 (𝐹) and 𝐻0 (𝐹 ′) are
𝛼-cocontinuous by hypothesis. By the axioms of triangulated categories, we have that

𝐻0 (𝐹 ′′) ©­«
𝐻 0 (A)∐

𝑖

𝐴𝑖
ª®¬ �

𝐻 0 (B)∐
𝑖

𝐻0 (𝐹 ′′) (𝐴𝑖).

Hence 𝐹 ′′ ∈ RHom𝛼 (A,B), which concludes the argument. �

3.6. The cocontinuous internal hom of well generated dg categories. In this section we
prove that for well generated dg categories A and B, the dg category RHom𝑐 (A,B) is
again well generated.

Remark 3.26. Let 𝔟 be a small dg category and consider the associated dg Yoneda
embedding 𝑌𝔟 : 𝔟 → D(𝔟). From this point on, we will abuse notations and write
𝑌𝔟 = ℎ𝑌𝔟 ∈ RHom(𝔟,D(𝔟)). In the same lines, if 𝔟 is homotopically 𝛼-cocomplete
and 𝑌 ′

𝔟
: 𝔟 → D𝛼 (𝔟) is the corestriction of the Yoneda embedding, we will write

𝑌 ′
𝔟
= ℎ𝑌 ′

𝔟
∈ RHom(𝔟,D𝛼 (𝔟)).

The following result extends Toën’s derived Morita theory (the case C = D(𝔠)) from [32,
Thm 7.2] (see also [6, Corollary 4.2]).

Proposition 3.27. Let 𝔟 be a small dg category and C a well generated dg category. We
have that the dg functor

(21) − ⊗L𝑌𝔟 : RHomc (D(𝔟), C) → RHom(𝔟, C).
is a quasi-equivalence, where 𝑌𝔟 ∈ RHom(𝔟,D(𝔟)) is the dg Yoneda embedding (see
Remark 3.26). Therefore, RHomc (D(𝔟), C) � RHom(𝔟, C) in Hqe.

Proof. If C = D(𝔠), the theorem reduces to derived Morita theory. In order to pro-
vide the proof for C an arbitrary well generated dg category, we will build upon the
proof of [6, Corollary 4.2]. Consider C a well generated dg category. In particular,
by Theorem 3.17 there exists a small dg category 𝔠, a quasi-fully faithful dg functor
𝑖 : C −→ D(𝔠) and a bimodule 𝑎 ∈ RHomc (D(𝔠), C) such that 𝑎 a𝐻 0 𝑖 and hence
in particular, 𝑎 ⊗L

D(𝔠) 𝑖 � IdC ∈ 𝐻0 (RHom(C, C)) by Remark 3.10. This implies that
[𝑎] iso ◦ [𝑖] = IdC in Iso(𝐻0 (RHom(C, C))) � [C, C] (see Proposition 2.2), where [𝑎] iso
denotes the isomorphism class of [𝑎] ∈ 𝐻0 (RHom(C, C)).

First, we prove that, for every well generated dg category C, the map

(22) [D(𝔟), C]c −→ [𝔟, C] : 𝑓 ↦→ 𝑓 ◦ [𝑌𝔟]
is a bĳection, where [−,−]c indicates the subset of morphisms in Hqe such that the induced
morphism between the homotopy categories preserves coproducts.

We first prove surjectivity. Consider 𝑔 ∈ [𝔟, C]. Then, [𝑖] ◦𝑔 ∈ [𝔟,D(𝔠)] and by derived
Morita theory, there exists 𝑓 ∈ [D(𝔟),D(𝔠)]c such that 𝑓 ◦ [𝑌𝔟] = [𝑖] ◦ 𝑔. Consider now
[𝑎] iso ◦ 𝑓 , which belongs to [D(𝔟), C]c. Then, [𝑎] iso ◦ 𝑓 ◦ [𝑌𝔟] = [𝑎] iso ◦ [𝑖] ◦ 𝑔 = 𝑔, which
proves surjectivity.
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In order to prove injectivity, one can follow a very similar argument to that of the proof of
[6, Prop 3.10] in which a first step towards the proof of derived Morita theory is provided. We
provide the details here for convenience of the reader. Consider 𝑓1, 𝑓2 ∈ [D(𝔟), C]c such that
𝑓1◦[𝑌𝔟] = 𝑓2◦[𝑌𝔟]. By composing with [𝑖], we have [𝑖]◦ 𝑓1◦[𝑌𝔟] = [𝑖]◦ 𝑓2◦[𝑌𝔟] ∈ [𝔟,D(𝔠)].
It follows from [6, Prop 2.11(3)] that there exists a dg categoryA and a quasi-equivalence
𝐼 : A −→ D(𝔟) such that 𝑓𝑖 = [𝐹𝑖] ◦ [𝐼]−1 with 𝐹𝑖 : A −→ C a dg functor for 𝑖 = 1, 2.
Consequently, we have that [𝑖] ◦ 𝑓𝑖 = [𝑖 ◦ 𝐹𝑖] ◦ [𝐼]−1 for 𝑖 = 1, 2. We denote by 𝔞

the full dg subcategory of A such that 𝐼 ′ B 𝐼 |𝔞 induces a quasi-equivalence of 𝔞 with
the full dg subcategory qrep(𝔟) of D(𝔟) and by 𝐽 : 𝔞 ↩→ A the inclusion. We write
𝐺𝑖 B 𝐹𝑖 ◦ 𝐽 : 𝔞 −→ C for 𝑖 = 1, 2. We hence have, for 𝑖 = 1, 2, the following commutative
diagram

(23)
D(𝔟) A D(𝔠).

qrep(𝔟) 𝔞

∼
𝐼 𝑖◦𝐹𝑖

𝐽 ′

∼
𝐼 ′

𝑖◦𝐺𝑖

𝐽

Following the notations of [6, §3.1], we consider the extension of 𝑖 ◦ 𝐺𝑖:�𝑖 ◦ 𝐺𝑖 : dgMod(𝔞) → dgMod(𝔠) : 𝑋 ↦→ 𝐸𝑖 ⊗L 𝑋

where 𝐸𝑖 ∈ dgMod(𝔠 ⊗L 𝔞op) is the bimodule corresponding to the functor 𝑖 ◦ 𝐺𝑖 : 𝔞 −→
D(𝔠), and the restriction of 𝑖 ◦ 𝐺𝑖:�𝑖 ◦ 𝐺𝑖 : dgMod(𝔠) → dgMod(𝔞) : 𝑋 ↦→ dgMod(𝔠) (𝑖 ◦ 𝐺𝑖 (−), 𝑋).

By [6, Prop 3.2], we have that 𝐻0 (�𝑖 ◦ 𝐺𝑖) is cocontinuous and it is easy to check that �𝑖 ◦ 𝐺𝑖

restricts to a dg functor D(𝔞) −→ D(𝔠), because 𝑖 ◦𝐺𝑖 (𝔞) ⊆ D(𝔠). In addition, we have the
adjunction �𝑖 ◦ 𝐺𝑖 a �𝑖 ◦ 𝐺𝑖 .

From the discussion above, we have that

[𝑖 ◦ 𝐺1] ◦ [𝐼 ′]−1 = [𝑖 ◦ 𝐹1] ◦ [𝐼]−1 ◦ [𝐽 ′] = [𝑖 ◦ 𝐹2] ◦ [𝐼]−1 ◦ [𝐽 ′] = [𝑖 ◦ 𝐺2] ◦ [𝐼 ′]−1,

and hence [𝑖 ◦ 𝐺1] = [𝑖 ◦ 𝐺2]. From [6, Lem 3.9] if follows that [�𝑖 ◦ 𝐺1] = [�𝑖 ◦ 𝐺2].
Consider now the restriction functor 𝐽∗ : dgMod(A) → dgMod(𝔞) : 𝑋 ↦→ 𝑋 ◦ 𝐽 and

the composition 𝐾 B 𝐽∗ ◦ 𝑌A . From the proof of [21, Prop 1.17] it follows that 𝐻0 (𝐾) is
cocontinuous and one has that 𝐾 (𝐽 (𝔞)) � 𝑌𝔞 (𝔞) ⊆ D(𝔞).

Now observe that �𝑖 ◦ 𝐺𝑖 ◦ 𝑖 ◦ 𝐹𝑖 (𝐴) = D(𝔠) (𝑖 ◦ 𝐺𝑖 (−), 𝑖 ◦ 𝐹𝑖 (𝐴)) for all 𝐴 ∈ A, and
hence we have the following natural transformation 𝛾 : 𝐾 −→ �𝑖 ◦ 𝐺𝑖 ◦ 𝑖 ◦ 𝐹𝑖 induced by
𝑖 ◦ 𝐹𝑖:

𝛾𝐴 : 𝐾 (𝐴) = A(𝐽 (−), 𝐴) −→ D(𝔠) (𝑖 ◦ 𝐹𝑖 ◦ 𝐽 (−), 𝑖 ◦ 𝐹𝑖 (𝐴)) = �𝑖 ◦ 𝐺𝑖 ◦ 𝑖 ◦ 𝐹𝑖 (𝐴).

By adjunction, we have a natural transformation 𝛽 : �𝑖 ◦ 𝐺𝑖 ◦ 𝐾 → 𝑖 ◦ 𝐹𝑖 with the property
that 𝐻0 (𝛽) |𝐽 (𝔞) is an isomorphism, where 𝐻0 (𝐽 (𝔞)) forms a compact generator of the well
generated triangulated category 𝐻0 (A). Consider the functor Φ𝑎 : D(𝔠) −→ qrep(C)
associated to 𝑎 ∈ RHomc (D(𝔠), C). By composing with Φ𝑎 we obtain a natural trans-
formation 𝛼 : Φ𝑎 ◦ �𝑖 ◦ 𝐺𝑖 ◦ 𝐾 −→ Φ𝑎 ◦ 𝑖 ◦ 𝐹𝑖 such that 𝐻0 (𝛼) |𝐽 (𝔞) is an isomorphism.
Then, we have that 𝐻0 (C) is well generated, 𝐻0 (Φ𝑎), 𝐻0 (�𝑖 ◦ 𝐺𝑖) and 𝐻0 (𝐾) are co-
continuous, and so is 𝐻0 (Φ𝑎) ◦ 𝐻0 (𝑖) ◦ 𝐻0 (𝐹𝑖) � 𝐻0 (𝐹𝑖). Consequently, by the same
argument of [6, Rem 2.4], we have that 𝛼 is a termwise homotopy equivalence, and hence
[𝑎] iso ◦ [�𝑖 ◦ 𝐺𝑖] ◦ [𝐾] = [𝑎] iso ◦ [𝑖] ◦ [𝐹𝑖] = [𝐹𝑖] for 𝑖 = 1, 2. Now, as [�𝑖 ◦ 𝐺1] = [�𝑖 ◦ 𝐺2],
we obtain that [𝐹1] = [𝐹2]. This finally implies that 𝑓1 = 𝑓2 as desired.

Now, define [D(𝔟) ⊗L 𝔞, C] ′c as the subset of [D(𝔟) ⊗L 𝔞, C] consisting of elements 𝑓
such that 𝐻0 ( 𝑓 ) (−, 𝐴) preserves coproducts for all 𝐴 ∈ 𝔞. Then, we have the following
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commutative diagram induced by the Yoneda embedding 𝑌𝔟 : 𝔟 −→ D(𝔟):

(24)

[𝔞,RHomc (D(𝔟), C)] [𝔞,RHom(𝔟, C)]

[
D(𝔟) ⊗L 𝔞, C

] ′
c

[
𝔞 ⊗L 𝔟, C

]
[D(𝔟),RHom(𝔞, C)]c [𝔟,RHom(𝔞, C)] ,

[−⊗L𝑌𝔟 ]◦−

�

�

�

�

−◦[𝑌𝔟 ]

where the vertical arrows are induced by the ⊗L-RHom adjunction in Hqe. As RHom(𝔞, C)
is well generated by Theorem 3.22, we have that the lower horizontal arrow is a bĳection
by the discussion above, and thus so is [− ⊗L 𝑌𝔟] ◦ −. Then, using Proposition 2.3 we
can conclude that [− ⊗L 𝑌𝔟] is an isomorphism in Hqe, proving that − ⊗L 𝑌𝔟 is a quasi-
equivalence, as desired. �

Proposition 3.28. Let 𝔟 be a homotopically 𝛼-cocomplete small dg category and C a well
generated dg category. We have that the dg functor
(25) − ⊗L𝑌 ′𝔟 : RHomc (D𝛼 (𝔟), C) → RHom𝛼 (𝔟, C)
is a quasi-equivalence, where 𝑌 ′

𝔟
∈ RHom(𝔟,D𝛼 (𝔟)) is the corestriction of the dg Yoneda

embedding (see Remark 3.26). Therefore, RHomc (D𝛼 (𝔟), C) � RHom𝛼 (𝔟, C) in Hqe.

Proof. First recall that we have a dg Bousfield localisation 𝑎 a𝐻 0 𝑖 : D𝛼 (𝔟) � D(𝔟). One
can easily see that 𝑎 ⊗L

D(𝔟) 𝑌𝔟 ∈ RHom𝛼 (𝔟,D𝛼 (𝔟)) is 𝛼-cocontinuous and it is isomorphic
in 𝐻0 (RHom𝛼 (𝔟,D𝛼 (𝔟))) to the corestriction of the Yoneda embedding 𝑌 ′

𝔟
: 𝔟 −→ D𝛼 (𝔟),

which can be easily deduced from the fact that 𝑌𝔟 = 𝑖 ◦ 𝑌 ′𝔟 . Hence, we have that

𝑖 ⊗L
D𝛼 (𝔟) 𝑎 ⊗

L
D(𝔟) 𝑌𝔟 � 𝑌𝔟 ∈ 𝐻

0 (RHom(𝔟,D(𝔟))).
We are going to show that, for any well generated dg category C, the map

(26) [D𝛼 (𝔟), C]c −→ [𝔟, C]𝛼 : 𝑓 ↦−→ 𝑓 ◦ [𝑎] iso ◦ [𝑌𝔟]
is a bĳection, where [−,−]c (resp. [−,−]𝛼) indicates the subset of morphisms in Hqe such
that the induced morphism between the homotopy categories preserves small coproducts
(resp. 𝛼-small coproducts). Given 𝑓 ◦[𝑎] iso◦[𝑌𝔟] = 𝑓 ′◦[𝑎] iso◦[𝑌𝔟], then, by derived Morita
theory, as both 𝑓 ◦[𝑎] iso and 𝑓 ′◦[𝑎] iso are cocontinuous, we have that 𝑓 ◦[𝑎] iso = 𝑓 ′◦[𝑎] iso.
Consequently,

𝑓 = 𝑓 ◦ [𝑎] iso ◦ [𝑖] iso = 𝑓 ′ ◦ [𝑎] iso ◦ [𝑖] iso = 𝑓 ′,

which proves injectivity.
Next, consider 𝑔 ∈ [𝔟, C]𝛼. Then, by derived Morita theory, there is an element

𝑓 ∈ [D(𝔟), C]c such that 𝑓 ◦ [𝑌𝔟] = 𝑔. We are going to show that 𝑓 factors through
[𝑎] iso ∈ [D(𝔟),D𝛼 (𝔟)]c. Indeed, by the description of the kernel of 𝐻0 (𝑎) provided in
Remark 3.14 and the universal property of the dg quotient (10), 𝑓 factors through [𝑎] iso if
and only if

𝐻0 ( 𝑓 ) (
∐
𝑖

𝑌𝔟 (𝐵𝑖)) � 𝐻0 ( 𝑓 ) (𝑌𝔟 (
∐
𝑖

𝐵𝑖)),

where
∐

𝑖 𝐵𝑖 is seen in 𝐻0 (𝔟), for all 𝛼-small coproducts. But this condition is readily seen
to be satisfied taking into account that 𝑓 is cocontinuous and 𝑓 ◦ [𝑌𝔟] = 𝑔 is 𝛼-cocontinuous,
and hence

𝑓 = 𝑡 ◦ [𝑎] iso.

In addition, 𝑡 is also cocontinuous by the universal property of the dg quotient (10), that is
𝑡 ∈ [D𝛼 (𝔟), C]c.

Now, observe that
𝑡 ◦ [𝑎] iso ◦ [𝑌𝔟] = 𝑓 ◦ [𝑌𝔟] = 𝑔,
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which proves surjectivity.
Now, we define [D𝛼 (𝔟) ⊗L𝔞, C] ′c as the subset of [D𝛼 (𝔟) ⊗L𝔞, C] consisting of elements

𝑓 such that 𝐻0 ( 𝑓 ) (−, 𝐴) preserves coproducts for all 𝐴 ∈ 𝔞. We define analogously
[𝔟 ⊗L 𝔞, C] ′𝛼 as the subset of

[
𝔟 ⊗L 𝔞, C

]
consisting of elements 𝑓 such that 𝐻0 ( 𝑓 ) (−, 𝐴)

preserves 𝛼-small coproducts for all 𝐴 ∈ 𝔞. Then, we have the following commutative
diagram induced by the dg functor 𝑌 ′

𝔟
: 𝔟 −→ D𝛼 (𝔟):

(27)

[𝔞,RHomc (D𝛼 (𝔟), C)] [𝔞,RHom𝛼 (𝔟, C)]

[
D𝛼 (𝔟) ⊗L 𝔞, C

] ′
c

[
𝔟 ⊗L 𝔞, C

] ′
𝛼

[D𝛼 (𝔟),RHom(𝔞, C)]c [𝔟,RHom(𝔞, C)]𝛼 ,

[−⊗L𝑌 ′
𝔟
]◦−

�

�

�

�

−◦[𝑎] iso◦[𝑌𝔟 ]
−◦[𝑌 ′

𝔟
]

where the vertical arrows are induced by the ⊗L-RHom adjunction in Hqe. As RHom(𝔞, C)
is well generated by Theorem 3.22, we have that the lower horizontal arrow is a bĳection,
and hence so is [− ⊗L 𝑌 ′

𝔟
] ◦ −. Therefore, using Proposition 2.3 we can conclude that

[− ⊗L 𝑌 ′
𝔟
] is an isomorphism in Hqe, as desired. �

Before proving the main result of the section, we will need the following lemma.

Lemma 3.29. Let A be a well generated dg category and consider a small family of
full well generated pretriangulated dg subcategories {B𝑖}𝑖∈𝐼 ofA closed under homotopy
coproducts. Then

⋂
𝑖 B𝑖 is a well generated pretriangulated dg subcategory of A.

Proof. Observe that 𝐻0 (⋂𝑖 B𝑖) =
⋂

𝑖 𝐻
0 (B𝑖) is a triangulated subcategory of A, and

hence
⋂

𝑖 B𝑖 is a pretriangulated dg subcategory of A. It is thus sufficient to show that
𝐻0 (⋂𝑖 B𝑖) is well generated. By hypothesis, we have that 𝐻0 (A) is well generated and
that, for all 𝑖 ∈ 𝐼,𝐻0 (B𝑖) ⊆ 𝐻0 (A) is a localising subcategory generated by a set of
objects. Consequently,

⋂
𝑖∈𝐼 𝐻

0 (B𝑖) = 𝐻0 (⋂𝑖∈𝐼 B𝑖) is also a localising subcategory of
𝐻0 (A) generated by a set of objects [11, Lem 3.2]. We can conclude by applying [17, Thm
7.2.1] that 𝐻0 (⋂𝑖 B𝑖) is well generated. �

Remark 3.30. The proof of the following theorem is a dg parallel of the argument followed
in [2, Thm 2.60] in order to prove that the category of models of a sketch taking values in
an accessible category is again accessible.

Theorem 3.31. LetA,B be two well generated dg categories. Then RHomc (A,B) is well
generated.

Proof. By Theorem 3.17, we can choose a cardinal 𝛼 such that A � D𝛼 (𝔞) for 𝔞 a
homotopically 𝛼-cocomplete small dg category. We can further assume that 𝔞 is cofibrant.
By Proposition 3.28, it is enough to prove that RHom𝛼 (𝔞,B) is well generated. Consider
the small family Λ = {(𝐴𝑖)𝑖∈𝐼 | 𝐴𝑖 ∈ 𝔞, |𝐼 | < 𝛼} of all 𝛼-small families of objects of 𝔞.
Given 𝜆 = (𝐴𝑖)𝑖∈𝐼 ∈ Λ, denote by E𝜆 the full dg subcategory of RHom(𝔞,B) with objects 𝐹
such that the canonical morphism

∐𝐻 0

𝑖 𝐻0 (𝐹) (𝐴𝑖) → 𝐻0 (𝐹) (∐𝐻 0

𝑖 𝐴𝑖) is an isomorphism
in 𝐻0 (B). Observe that RHom𝛼 (𝔞,B) =

⋂
𝜆∈Λ E𝜆. We claim it is enough to prove that

E𝜆 is well generated for each 𝜆. Indeed, we know by Theorem 3.22 that RHom(𝔞,B)
is well generated, and one can readily check following the same argument of the proof
of Corollary 3.25 that E𝜆 are pretriangulated dg subcategories of RHom(𝔞,B) closed
under homotopy coproducts. Hence, by Lemma 3.29, if E𝜆 is well generated for every
𝜆 ∈ Λ, we can conclude that

⋂
𝜆∈Λ E𝜆 is a well generated pretriangulated dg subcategory

of RHom(𝔞,B).
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It hence remains to prove that E𝜆 is well generated for every 𝜆 ∈ Λ. In order to show this
we will prove that E𝜆 is a homotopy fiber product of a cospan diagram of well generated dg
categories with cocontinuous dg functors. This allows us to conclude using the fact that the
homotopy category of well generated dg categories (i.e. locally presentable dg categories)
with cocontinuous morphisms is closed in Hqe under homotopy limits (see the proof of
[33, Lem 3.3] or [29, Rem 6.2.2]).

Fix 𝜆 = (𝐴𝑖)𝑖∈𝐼 ∈ Λ and consider the family of canonical morphisms 𝑠𝑖 : 𝐴𝑖 →
∐𝐻 0

𝑖 𝐴𝑖

in 𝐻0 (𝔞). We fix a family 𝑟𝑖 : 𝐴𝑖 →
∐𝐻 0

𝑖 (𝐴𝑖) in 𝑍0 (𝔞) lifting the 𝑠𝑖 . Consider the dg
category Ar0 with two objects 𝑋, 𝑋 ′ and morphisms Ar0 (𝑋, 𝑋) = 𝑘1𝑋 , Ar0 (𝑋 ′, 𝑋 ′) = 𝑘1𝑋 ′ ,
Ar0 (𝑋 ′, 𝑋) = 0 and Ar0 (𝑋, 𝑋 ′) = 𝑘𝑥 with 𝑥 a morphism in degree 0. We introduce the
following dg functors:

• We define the dg functor 𝐶 : RHomc (D(𝔞),B) → RHom(Ar0,B) as follows.
For any 𝐹 ∈ RHomc (D(𝔞),B) we associate the quasi-functor 𝐶 (𝐹), that as
a dg functor Φ𝐶 (𝐹 ) : Ar0 → qrep(B) is given by assigning to 𝑋 the object
Φ𝐹 (

∐
𝑖 ℎ𝐴𝑖
) ∈ qrep(B), to 𝑋 ′ the object Φ𝐹 (ℎ∐𝐻0

𝑖 𝐴𝑖
) ∈ qrep(B) and to 𝑥 the

morphism Φ𝐹 (can𝜆) where can𝜆 :
∐

𝑖 ℎ𝐴𝑖
→ ℎ∐𝐻0

𝑖 𝐴𝑖
is the canonical morphism

in D(𝔞) induced by ℎ𝑟𝑖 . In order to lighten the notations, from this point on and
for the rest of the proof we will not distinguish between right quasi-representable
bimodules 𝐹 and their associated dg functor Φ𝐹 . Given a morphism 𝛾 : 𝐹 → 𝐺,
we associate to it the following natural morphism 𝐶 (𝛾) in RHom(Ar0,B):

𝐹 (∐𝑖 ℎ𝐴𝑖
) 𝐹 (ℎ∐𝐻0

𝑖 𝐴𝑖
)

𝐺 (∐𝑖 ℎ𝐴𝑖
) 𝐺 (ℎ∐𝐻0

𝑖 𝐴𝑖
),

𝐶 (𝐹 ) (𝑥)=𝐹 (can𝜆)

𝛾𝑋=𝛾∐
𝑖 ℎ𝐴𝑖

𝛾𝑋′=𝛾ℎ∐𝐻0
𝑖

𝐴𝑖

𝐶 (𝐺) (𝑥)=𝐺 (can𝜆)

already seen inside qrep(B). We will denote this morphism by (𝛾∐
𝑖 ℎ𝐴𝑖

, 𝛾ℎ∐𝐻0
𝑖

𝐴𝑖

),
and from now on we will follow this notation for morphisms in RHom(Ar0,B). In
particular, if 𝜙 ∈ RHom(Ar0,B), we write 𝜙 = (𝜙1, 𝜙2).
• We define the dg functor 𝐼 : qrep(B) → RHom(Ar0,B) given by associating to

each 𝐵 ∈ qrep(B) the quasi-functor with constant value 𝐵 and such that 𝐼 (𝐵) (𝑥) =
Id𝐵. We define 𝐼 on morphisms in the natural way.

We are going to show that E𝜆 is the homotopy limit of the following diagram

qrep(B)

RHomc (D(𝔞),B) RHom(Ar0,B).
𝐼

𝐶

This will allow us to conclude. Indeed, B is a well generated dg category and hence so
is qrep(B) because they are isomorphic in Hqe. In addition, by Proposition 3.28 we have
that RHomc (D(𝔞),B) � RHom(𝔞,B) in Hqe. Consequently, as a direct consequence of
Theorem 3.22, we can conclude that RHomc (D(𝔞),B) and RHom(Ar0,B) are also well
generated dg categories. Furthermore, both 𝐼 and 𝐶 are easily seen to be cocontinuous.

In [3, §4] a model for the homotopy limit in Hqe is described using path objects. In
what follows we will construct a quasi-equivalence from this concrete model to E𝜆. Let
us begin with describing the model for P B RHomc (D(𝔞),B) ×h

RHom(Ar0 ,B) qrep(B). The
objects of P are given by{
(𝐹, 𝐵, 𝜙) | 𝐹 ∈RHomc (D(𝔞),B), 𝐵 ∈ qrep(B), 𝜙 ∈ RHom(Ar0,B)0 (𝐶 (𝐹), 𝐼 (𝐵)),

𝜙 is closed and becomes an isomorphism in 𝐻0 (RHom(Ar0,B))
}
.
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The morphisms of degree 𝑛 are given by

P𝑛 ((𝐹1, 𝐵1, 𝜙1), (𝐹2, 𝐵2, 𝜙2)) =
RHomc (D(𝔞),B)𝑛 (𝐹1, 𝐹2) ⊕ qrep(B)𝑛 (𝐵1, 𝐵2) ⊕ RHom(Ar0,B)𝑛−1 (𝐶 (𝐹1), 𝐼 (𝐵2)).

Given a morphism (𝛾, 𝜇, 𝜈) : (𝐹1, 𝐵1, 𝜙1) → (𝐹2, 𝐵2, 𝜙2) of degree 𝑛 and a morphism
(𝛾′, 𝜇′, 𝜈′) : (𝐹2, 𝐵2, 𝜙2) → (𝐹3, 𝐵3, 𝜙3) the composition is provided by

(𝛾′, 𝜇′, 𝜈′) (𝛾, 𝜇, 𝜈) = (𝛾′𝛾, 𝜇′𝜇, (−1)𝑛𝜈′𝐶 (𝛾) + 𝐼 (𝜇′)𝜈)

and the differential is given by

𝑑 (𝛾, 𝜇, 𝜈) = (𝑑𝛾, 𝑑𝜇, 𝑑𝜈 + (−1)𝑛 (𝜙2𝐶 (𝛾) − 𝐼 (𝜇)𝜙1)).

We first show that if (𝐹, 𝐵, 𝜙) ∈ P, then the quasi-representable bimodule 𝐹 ⊗L 𝑌 ∈
RHom(𝔞,B) lies in E𝜆. Indeed, because 𝜙 : 𝐶 (𝐹) → 𝐼 (𝐵) is a homotopy equivalence, we
have that 𝐻0 (𝐹 (can𝜆)) is an isomorphism and, because 𝐹 is cocontinuous, the canonical
morphism

∐𝐻 0

𝑖 (𝐻0 (𝐹) (ℎ𝐴𝑖
)) → 𝐻0 (𝐹) (∐𝑖 ℎ𝐴𝑖

) also is. Therefore, the composition∐𝐻 0

𝑖 (𝐻0 (𝐹) (ℎ𝐴𝑖
)) 𝐻0 (𝐹) (∐𝑖 ℎ𝐴𝑖

) 𝐻0 (𝐹) (ℎ∐𝐻0
𝑖 𝐴𝑖
)𝐻 0 (𝐹 (can𝜆))

is an isomorphism, and thus we can conclude that the canonical morphism

𝐻 0∐
𝑖

(𝐻0 (𝐹 ⊗L 𝑌 ) (𝐴𝑖)) → 𝐻0 (𝐹 ⊗L 𝑌 ) (
𝐻 0∐
𝑖

𝐴𝑖)

is an isomorphism as well, proving the claim.
We define a dg functor 𝑆 : P → E𝜆 as follows. To every (𝐹, 𝐵, 𝜙) ∈ P we associate

𝐹 ⊗L𝑌 ∈ E𝜆 and to every morphism (𝛾, 𝜇, 𝜈) ∈ P((𝐹, 𝐵, 𝜙), (𝐹 ′, 𝐵′, 𝜙′)) we associate the
morphism 𝛾 ⊗L𝑌 ∈ E𝜆 (𝐹 ⊗L𝑌, 𝐹 ′ ⊗L𝑌 ). It is readily seen that this is indeed a dg functor.
To conclude, it is enough to show that 𝑆 is a quasi-equivalence.

We first show that 𝑆 is quasi-essentially surjective. We know from the proof of Propo-
sition 3.27 that the dg functor

RHomc (D(𝔞),B) → RHom(𝔞,B) : 𝐹 ↦→ 𝐹 ⊗L 𝑌

is a quasi-equivalence. Consequently, given 𝐺 ∈ 𝐻0 (E𝜆) ⊆ 𝐻0 (RHom(𝔞,B)), we can
choose an 𝐹 ∈ 𝐻0 (RHomc (D(𝔞),B)) such that there is an isomorphism 𝜓 : 𝐹 ⊗L 𝑌 → 𝐺

in 𝐻0 (RHom(𝔞,B)). It is then easy to check that 𝐹 (can𝜆) induces an isomorphism in
𝐻0 (qrep(B)). Denote by 𝜙 ∈ RHom0 (Ar0,B)(𝐶 (𝐹), 𝐼 (𝐺 (

∐𝐻 0

𝑖 𝐴𝑖))) the closed mor-
phism of degree 0 given by (𝜓 ◦ 𝐹 (can𝜆), 𝜓), where 𝜓 is a 0-cycle lifting the isomorphism

𝜓 |∐𝐻0
𝑖 𝐴𝑖

: 𝐹 ⊗L 𝑌 (
𝐻 0∐
𝑖

𝐴𝑖) → 𝐺 (
𝐻 0∐
𝑖

𝐴𝑖)

in 𝐻0 (qrep(B)). Observe that 𝜙 becomes an isomorphism in 𝐻0 (RHom(Ar0,B)). There-
fore, we have that (𝐹, 𝐺 (∐𝐻 0

𝑖 𝐴𝑖), 𝜙) belongs to P, and it is easy to see that, seen as an
object in 𝐻0 (P), it is sent to 𝐺 ∈ 𝐻0 (E𝜆), proving that 𝑆 is quasi-essentially surjective as
desired.

We now show that 𝑆 is quasi-full. Consider 𝜎 ∈ Z𝑛 (E𝜆) (𝑆(𝐹, 𝐵, 𝜙), 𝑆(𝐹 ′, 𝐵′, 𝜙′)) =
Z𝑛 (E𝜆) (𝐹 ⊗L 𝑌, 𝐹 ′ ⊗L 𝑌 ). As E𝜆 is a full dg subcategory of RHom(𝔞,B) and − ⊗L 𝑌 :
RHomc (D(𝔞),B) → RHom(𝔞,B) is a quasi-equivalence by Proposition 3.27, we have
that there exists a 𝜎′ ∈ Z𝑛 (RHomc (D(𝔞),B))(𝐹, 𝐹 ′) such that 𝐻𝑛 (− ⊗L 𝑌 ) ( [𝜎′]) = [𝜎].
Next observe that, because [𝜙] ∈ 𝐻0 (Ar0,B)(𝐶 (𝐹), 𝐼 (𝐵)) is an isomorphism, we can
consider a 0-cycle 𝜓 ∈ RHom(Ar0,B)(𝐼 (𝐵), 𝐶 (𝐹)) such that [𝜓] = [𝜙]−1. Therefore,
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there exists an 𝛼 ∈ RHom−1 (Ar0,B)(𝐶 (𝐹), 𝐶 (𝐹)) such that 𝑑 (𝛼) = Id𝐶 (𝐹 ) − 𝜓𝜙. We
define 𝜇 ∈ qrep(B)(𝐵, 𝐵′) as the composite

𝐵 𝐹 (∐𝑖 ℎ𝐴𝑖
) 𝐹 ′(∐𝑖 ℎ𝐴𝑖

) 𝐵′,
𝜓1

𝜎′∐
𝑖 ℎ𝐴𝑖

𝜙′1

and 𝜈 ∈ RHom𝑛−1 (Ar0,B)(𝐶 (𝐹), 𝐼 (𝐵′)) as the composite

𝐶 (𝐹) 𝐶 (𝐹) 𝐶 (𝐹 ′) 𝐼 (𝐵′).−𝛼 𝐶 (𝜎′) 𝜙′

We claim that (𝜎′, 𝜇, 𝜈) ∈ Z𝑛 (P)((𝐹, 𝐵, 𝜙), (𝐹 ′, 𝐵′, 𝜙′)). Indeed, we have that

𝑑 (𝜎′, 𝜇, 𝜈) = 𝑑
(
𝜎′, 𝜙′1𝜎

′∐
𝑖 ℎ𝐴𝑖

𝜓1,−(𝜙′𝐶 (𝜎′)𝛼)
)

=

(
0, 0,−𝑑 (𝜙′𝐶 (𝜎′)𝛼) + (−1)𝑛

(
𝜙′𝐶 (𝜎′) − 𝐼 (𝜙′1𝜎

′∐
𝑖 ℎ𝐴𝑖

𝜓1)𝜙
))

= (0, 0,−(−1)𝑛𝜙′𝐶 (𝜎′)𝑑 (𝛼) + (−1)𝑛 (𝜙′𝐶 (𝜎′) − 𝜙′𝐶 (𝜎′)𝜓𝜙))
=

(
0, 0,−(−1)𝑛𝜙′𝐶 (𝜎′) (Id𝐶 (𝐹 ) − 𝜓𝜙) + (−1)𝑛𝜙′𝐶 (𝜎′)

(
Id𝐶 (𝐹 ) − 𝜓𝜙

) )
= (0, 0, 0),

where the third equality follows from

𝐼 (𝜙′1𝜎
′∐

𝑖 ℎ𝐴𝑖
𝜓1)𝜙 =

(
𝜙′1𝜎

′∐
𝑖 ℎ𝐴𝑖

𝜓1𝜙1, 𝜙
′
1𝜎
′∐

𝑖 ℎ𝐴𝑖
𝜓1𝜙2

)
=

(
𝜙′1𝜎

′∐
𝑖 ℎ𝐴𝑖

𝜓1𝜙1, 𝜙
′
2𝐹
′(can𝜆)𝜎′∐

𝑖 ℎ𝐴𝑖
𝜓1𝜙2

)
=

(
𝜙′1𝜎

′∐
𝑖 ℎ𝐴𝑖

𝜓1𝜙1, 𝜙
′
2𝜎
′
ℎ∐𝐻0

𝑖
𝐴𝑖

𝐹 (can𝜆)𝜓1𝜙2

)
=

(
𝜙′1𝜎

′∐
𝑖 ℎ𝐴𝑖

𝜓1𝜙1, 𝜙
′
2𝜎
′
ℎ∐𝐻0

𝑖
𝐴𝑖

𝜓2𝜙2

)
= 𝜙′𝐶 (𝜎′)𝜓𝜙.

By construction, one readily sees that [(𝜎′, 𝜇, 𝜈)] ∈ 𝐻𝑛 (P)((𝐹, 𝐵, 𝜙), (𝐹 ′, 𝐵′, 𝜙′)) gets
sent to [𝜎] ∈ 𝐻𝑛 (E𝜆) (𝐹 ⊗L 𝑌, 𝐹 ′ ⊗L 𝑌 ) via 𝐻𝑛 (𝑆), proving that 𝑆 is quasi-full as desired.

To finish the argument, it remains to show that 𝑆 is quasi-faithful. Consider (𝛾, 𝜇, 𝜈) ∈
𝑍𝑛P((𝐹, 𝐵, 𝜙), (𝐹 ′, 𝐵′, 𝜙′)) such that [(𝛾, 𝜇, 𝜈)] ∈ 𝐻𝑛P((𝐹, 𝐵, 𝜙), (𝐹 ′, 𝐵′, 𝜙′)) gets sent
to 0 via

𝐻𝑛P((𝐹, 𝐵, 𝜙), (𝐹 ′, 𝐵′, 𝜙′)) → 𝐻𝑛E𝜆 (𝐹 ⊗L 𝑌, 𝐹 ′ ⊗L 𝑌 ).
In what follows, we denote by 𝜙𝐹 ∈ RHom0 (Ar0,B)(𝐶 (𝐹), 𝐹 (ℎ∐𝐻0

𝑖 𝐴𝑖
)) the natural

morphism (𝐹 (can𝜆), Id𝐹 (ℎ∐𝐻0
𝑖

𝐴𝑖

) ). Notice that 𝜙𝐹 is closed and induces an isomorphism

in 𝐻0 (RHom(Ar0,B)). First, one observes that the morphism

(Id𝐹 , 𝜙2, 0) : (𝐹, 𝐹 (ℎ∐𝐻0
𝑖 𝐴𝑖
), 𝜙𝐹 ) → (𝐹, 𝐵, 𝜙)

is a homotopy equivalence by using the characterization of homotopy equivalences in P
provided in [3, Lem 4.2]. Consequently, in order to conclude that [(𝛾, 𝜇, 𝜈)] = 0 is enough
to show that [(𝛾, 𝜇, 𝜈) (Id𝐹 , 𝜙2, 0)] = 0. We have that

(𝛾, 𝜇, 𝜈) (Id𝐹 , 𝜙2, 0) = (𝛾, 𝜇𝜙2, (−1)0𝜈𝐶 (Id𝐹 ) + 𝐼 (𝜇)0) = (𝛾, 𝜇𝜙2, 𝜈)

in 𝑍𝑛P((𝐹, 𝐹 (ℎ∐𝐻0
𝑖 𝐴𝑖
), 𝜙𝐹 ), (𝐹 ′, 𝐵′, 𝜙′)). Therefore, it suffices to show that there exists

an (𝛼, 𝛽, 𝛿) ∈ P𝑛−1 ((𝐹, 𝐹 (∐𝐻 0

𝑖 𝐴𝑖), 𝜙𝐹 ), (𝐹 ′, 𝐵′, 𝜙′)) such that 𝑑 (𝛼, 𝛽, 𝛿) = (𝛾, 𝜇𝜙2, 𝜈).
First observe that [𝛾⊗L𝑌 ] = 0 in𝐻𝑛E𝜆 (𝐹⊗L𝑌, 𝐹 ′⊗L𝑌 ) by hypothesis, and hence, [𝛾] = 0
in𝐻𝑛 (RHomc (D(𝔞),B))(𝐹, 𝐹 ′). Thus, there exists an element𝛼 ∈ RHomc (D(𝔞),B))𝑛−1 (𝐹, 𝐹 ′)
such that 𝑑𝛼 = 𝛾. Our candidate (𝛼, 𝛽, 𝛿) is going to be (𝛼, 𝜙′2𝛼ℎ∐𝐻0

𝑖
𝐴𝑖

+ (−1)𝑛𝜈2, 0). First
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we compute 𝑑𝜈2. As (𝛾, 𝜇, 𝜈) is a 𝑛-cycle, we have that 𝑑 (𝛾, 𝜇, 𝜈) = 0, in particular, this
implies that 0 = 𝑑𝜈 + (−1)𝑛 (𝜙′𝐶 (𝛾) − 𝐼 (𝜇)𝜙), that is

(𝑑𝜈1, 𝑑𝜈2) =
(
(−1)𝑛 (−𝜙′1𝛾∐

𝑖 ℎ𝐴𝑖
+ 𝜇𝜙1), (−1)𝑛 (−𝜙′2𝛾ℎ∐𝐻0

𝑖
𝐴𝑖

+ 𝜇𝜙2)
)
.

Making use of this, we can compute now:
𝑑𝛽 = 𝑑 (𝜙′2𝛼ℎ∐𝐻0

𝑖
𝐴𝑖

+ (−1)𝑛𝜈2) = 𝜙′2𝛾ℎ∐𝐻0
𝑖

𝐴𝑖

+ (−1)𝑛𝑑𝜈2

= 𝜙′2𝛾ℎ∐𝐻0
𝑖

𝐴𝑖

+ (−1)𝑛 ((−1)𝑛 (−𝜙′2𝛾ℎ∐𝐻0
𝑖

𝐴𝑖

+ 𝜇𝜙2))

= 𝜇𝜙2.

Consequently, we have that
𝑑 (𝛼, 𝛽, 𝛿) = 𝑑 (𝛼, 𝜙′2𝛼ℎ∐𝐻0

𝑖
𝐴𝑖

+ (−1)𝑛𝜈2, 0)

=

(
𝛾, 𝜇𝜙2, (−1)𝑛−1 (𝜙′𝐶 (𝛼) − 𝐼 (𝜙′2𝛼ℎ∐𝐻0

𝑖
𝐴𝑖

+ (−1)𝑛𝜈2)𝜙𝐹 )
)
,

where the last component is given by:

(−1)𝑛−1 (𝜙′𝐶 (𝛼) − 𝐼 (𝜙′2𝛼ℎ∐𝐻0
𝑖

𝐴𝑖

+ (−1)𝑛𝜈2)𝜙𝐹 ) =

= (−1)𝑛−1
(
𝜙′1𝛼

∐
𝑖 ℎ𝐴𝑖
− 𝜙′2𝛼ℎ∐𝐻0

𝑖
𝐴𝑖

𝐹 (can𝜆) − (−1)𝑛𝜈2𝐹 (can𝜆),

𝜙′2𝛼ℎ∐𝐻0
𝑖

𝐴𝑖

− 𝜙′2𝛼ℎ∐𝐻0
𝑖

𝐴𝑖

− (−1)𝑛𝜈2

)
= (−1)𝑛−1

(
𝜙′1𝛼

∐
𝑖 ℎ𝐴𝑖
− 𝜙′2𝛼ℎ∐𝐻0

𝑖
𝐴𝑖

𝐹 (can𝜆) − (−1)𝑛𝜈2𝐹 (can𝜆),−(−1)𝑛𝜈2

)
= (−1)𝑛−1

(
𝜙′1𝛼

∐
𝑖 ℎ𝐴𝑖
− 𝜙′1𝛼∐

𝑖 ℎ𝐴𝑖
− (−1)𝑛𝜈1,−(−1)𝑛𝜈2

)
= (−1)𝑛−1 (−(−1)𝑛𝜈1,−(−1)𝑛𝜈2) = (𝜈1, 𝜈2) = 𝜈

We hence have that 𝑑 (𝛼, 𝛽, 𝛿) = (𝛾, 𝜇𝜙2, 𝜈) as desired. �

4. The well generated tensor product

Let Hqewg denote the subcategory of 𝔙-Hqe given by the 𝔙-small 𝔘-well generated dg
categories with cocontinuous quasi-functors. Up to equivalence, Hqewg is easily seen to be
independent of the choice of 𝔙.

Definition 4.1. Let A and B be well generated dg categories. A well generated tensor
product of A and B is defined as a well generated dg category A � B such that for every
well generated dg category C, the following universal property holds:

(28) RHomc (A � B, C) � RHomc (A,RHomc (B, C)).

As a consequence, by Theorem 3.31, if we can show that the tensor product of well
generated dg categories exists, the resulting monoidal structure on Hqewg is closed.

Remark 4.2. Note that the situation is different from the one for Grothendieck categories.
As shown in [20, Thm 5.4], the tensor product of locally presentable 𝑘-linear categories is
closed under Grothendieck categories, but the natural inner hom of cocontinuous functors
between locally presentable categories is not (as follows for instance from [28, Rem 6.5]).
However, by Corollary 3.18, the distinction between locally presentable categories and
localisations of module categories does not exist on the derived level, whence this subtlety
vanishes. An in depth study of the nature of morphisms categories between abelian
categories is the topic of an ongoing joint project with Michel Van den Bergh.
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The rest of the paper is devoted to proving that the well generated tensor product exists
(Theorem 4.14), and providing various constructions using localisation theory. In particular,
§4.2 and §4.3 discuss the relation between the tensor product and the dg quotient, in §4.4
the tensor product is described in terms of localising subcategories of dg derived categories,
and in §4.5 the tensor product is described in terms of their Bousfield localisations.

We start with some considerations regarding the internal hom in two variables in §4.1.

4.1. Considerations in the two variable setting. We devote this section to prove that both
(𝛼-)cocontinuity and annihilation of classes of objects behave suitably with respect to the
monoidal structure. From now on, and for the rest of the paper, we will make implicit
use of the fact that for every homotopically cocomplete small dg category, we can pick
a cofibrant replacement in Hqe which is also homotopically cocomplete (homotopically
cocompleteness is preserved under quasi-equivalences) and this cofibrant replacement is
the identity on objects (see Proposition 2.1 above).

Let A,B, C be dg categories. Consider a right quasi-representable bimodule 𝐹 ∈
RHom(A ⊗L B, C) and observe that the dg module 𝐹 ∈ dgMod(C ⊗L Aop ⊗L Bop)
with evaluations 𝐹 (𝐶, 𝐴, 𝐵) gives rise on one hand to a bimodule 𝐹𝐴 = 𝐹 (−, 𝐴,−) ∈
dgMod(C ⊗LBop) for every 𝐴 ∈ A and on the other hand to a bimodule 𝐹𝐵 = 𝐹 (−,−, 𝐵) ∈
dgMod(C ⊗L Aop) for every 𝐵 ∈ B, and according to (5) these are all right quasi-
representable.

Definition 4.3. We call 𝐹 ∈ RHom(A ⊗L B, C) right cocontinuous provided that ev-
ery 𝐹𝐵 is cocontinuous, left cocontinuous provided that every 𝐹𝐴 is cocontinuous, and
bicocontinuous provided that it is left and right cocontinuous.

We denote by RHomc,c (A ⊗L B, C) ⊆ RHom(A ⊗L B, C) the full dg subcategory of
bicocontinuous modules.

Given a regular cardinal 𝛼, the notions of left-, right- and bi-𝛼-cocontinuous are defined
similarly. In particular, we denote by RHom𝛼,𝛼 (A ⊗L B, C) ⊆ RHom(A ⊗L B, C) the
full dg subcategory of bi-𝛼-cocontinuous right quasi-representable bimodules.

Definition 4.4. Consider NA a class of objects in A and NB a class of objects in B.
With the same notations as above, we say 𝐹 ∈ RHom(A ⊗LB, C) biannihilates (NA ,NB)
provided that every 𝐹𝐴 annihilates NB and every 𝐹𝐵 annihilates NA .

We denote by RHomNA ,NB (A ⊗L B, C) ⊆ RHom(A ⊗L B, C) the full dg subcategory
of right quasi-representable bimodules that biannihilate (NA ,NB).

Similarly, we denote by RHom(c,NA ) , (c,NB ) (A ⊗L B, C) ⊆ RHom(A ⊗L B, C) the full
dg subcategory of bicocontinuous right quasi-representable bimodules that biannihilate
(NA ,NB).

We include the proof of the following statement for the convenience of the reader.

Lemma 4.5. Let 𝛼 ≤ |𝔘| be a regular cardinal. The following hold:
(1) For homotopically cocomplete dg categories A, B and C, we have that the equiv-

alence (5) restricts to:

(29) RHomc,c (A ⊗L B, C) � RHomc (A,RHomc (B, C))

(2) For homotopically 𝛼-cocomplete dg categories A, B and C, we have that the
equivalence (5) restricts to:

(30) RHom𝛼,𝛼 (A ⊗L B, C) � RHom𝛼 (A,RHom𝛼 (B, C))

(3) For homotopically cocomplete dg categories A, B and C and sets of objects NA
in A and NB in B, we have that the equivalence (5) restricts to:

(31) RHom(c,NA ) , (c,NB ) (A ⊗L B, C) � RHomc,NA (A,RHomc,NB (B, C))
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Proof. Observe that (1) is the case 𝛼 = |𝔘| of (2). We prove (2). First we show that for any
𝐹 ∈ RHom𝛼,𝛼 (A ⊗L B, C) ⊆ RHom(A ⊗L B, C) the image of 𝐹 via (5) is an element of
RHom𝛼 (A,RHom𝛼 (B, C)). If we denote by �̄� the image of 𝐹 in RHom(A,RHom(B, C))
via (5) we have that �̄� (𝐴) = 𝐹𝐴 factors through RHom𝛼 (B, C) ⊆ RHom(B, C) by
hypothesis. We hence have that �̄� belongs to RHom(A,RHom𝛼 (B, C)). Let’s now
show that �̄� actually belongs to RHom𝛼 (A,RHom𝛼 (B, C)). Let {𝐴𝑖}𝑖∈𝐼 be an 𝛼-small
family of objects in A. By definition, we have that

(32) 𝐻0 (�̄�) ©­«
𝐻 0 (A)∐
𝑖∈𝐼

𝐴𝑖
ª®¬ = 𝐹∐𝐻0 (A)

𝑖∈𝐼 𝐴𝑖

∈ 𝐻0 (RHom𝛼 (B, C)).

For all 𝑖 ∈ 𝐼 we have a natural morphism

(33) 𝐹∐𝐻0 (A)
𝑖∈𝐼 𝐴𝑖

= 𝐻0 (�̄�) (
𝐻 0 (A)∐
𝑖∈𝐼

𝐴𝑖) ←− 𝐻0 (�̄�) (𝐴𝑖) = 𝐹𝐴𝑖
,

in 𝐻0 (RHom𝛼 (B, C)), and hence we have the natural morphism

(34)
𝐻 0 (RHom𝛼 (B,C))∐

𝑖∈𝐼
𝐹𝐴𝑖
−→ 𝐹∐𝐻0 (A)

𝑖∈𝐼 𝐴𝑖

in 𝐻0 (RHom𝛼 (B, C)), induced by the universal property of the coproduct. We claim that
this morphism is an isomorphism. Indeed, observe that for all 𝐵 ∈ B, we have

(35)

𝐻0 ©­«
𝐻 0 (RHom𝛼 (B,C))∐

𝑖∈𝐼
𝐹𝐴𝑖

ª®¬ (𝐵) =
=

𝐻 0 (C)∐
𝑖∈𝐼

𝐻0 (𝐹𝐴𝑖
) (𝐵) =

𝐻 0 (C)∐
𝑖∈𝐼

𝐻0 (𝐹 (𝐴𝑖 , 𝐵,−)) =
𝐻 0 (C)∐
𝑖∈𝐼

𝐻0 (𝐹𝐵) (𝐴𝑖) =

= 𝐻0 (𝐹𝐵)
©­«
𝐻 0 (A)∐
𝑖∈𝐼

𝐴𝑖
ª®¬ = 𝐻0 ©­«𝐹 ©­«

𝐻 0 (A)∐
𝑖∈𝐼

𝐴𝑖 , 𝐵,−
ª®¬ª®¬ = 𝐻0

(
𝐹∐𝐻0 (A)

𝑖∈𝐼 𝐴𝑖

)
(𝐵),

functorially in 𝐵 ∈ B, where the first equality follows from Corollary 3.25 and the fourth
from the fact that 𝐹𝐵 ∈ RHom𝛼 (A, C). It follows that (34) is an isomorphism. Conse-
quently, we have that
(36)

𝐻0 (�̄�) (
𝐻 0 (A)∐
𝑖∈𝐼

𝐴𝑖) = 𝐹∐𝐻0 (A)
𝑖∈𝐼 𝐴𝑖

�

𝐻 0 (RHom𝛼 (B,C))∐
𝑖∈𝐼

𝐹𝐴𝑖
=

𝐻 0 (RHom𝛼 (B,C))∐
𝑖∈𝐼

𝐻0 (�̄�) (𝐴𝑖)

in 𝐻0 (RHom𝛼 (B, C)), as desired.
To conclude it is enough to prove that for any 𝐹 ∈ RHom(A ⊗LB, C), if its image �̄� via

(5) belongs to RHom𝛼 (A,RHom𝛼 (B, C)), then 𝐹 lies in RHom𝛼,𝛼 (A ⊗L B, C). Take
such an 𝐹. By definition, for every 𝐴 ∈ A we have that

�̄� (𝐴) = 𝐹𝐴 ∈ RHom𝛼 (B, C),
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which proves the 𝛼-cocontinuity of 𝐹𝐴 for all 𝐴 ∈ A. Let {𝐴𝑖}𝑖∈𝐼 an 𝛼-small family of
objects in A. For every 𝐵 ∈ B we have that

𝐻0 (𝐹𝐵)
©­«
𝐻 0 (A)∐
𝑖∈𝐼

𝐴𝑖
ª®¬ =

= 𝐻0 ©­«𝐹 ©­«
𝐻 0 (A)∐
𝑖∈𝐼

𝐴𝑖 , 𝐵,−
ª®¬ª®¬ = 𝐻0

(
𝐹∐𝐻0 (A)

𝑖∈𝐼 𝐴𝑖

)
(𝐵) = 𝐻0 ©­«𝐻0 (�̄�) ©­«

𝐻 0 (A)∐
𝑖∈𝐼

𝐴𝑖
ª®¬ª®¬ (𝐵) =

= 𝐻0 ©­«
𝐻 0 (RHom𝛼 (B,C))∐

𝑖∈𝐼
𝐻0 (�̄�) (𝐴𝑖)

ª®¬ (𝐵) =
𝐻 0 (C)∐
𝑖∈𝐼
(𝐻0 (𝐹𝐴𝑖

) (𝐵)) =
𝐻 0 (C)∐
𝑖∈𝐼

𝐻0 (𝐹𝐵) (𝐴𝑖),

where the fourth equality uses the fact that �̄� ∈ RHom𝛼 (A,RHom𝛼 (B, C)) and the fith
follows from Corollary 3.25. This proves the 𝛼-cocontinuity of 𝐹𝐵 for all 𝐵 ∈ B. We can
thus conclude that 𝐹 ∈ RHom𝛼,𝛼 (A ⊗L B, C) as we wanted to show.

We prove (3). It is enough to see that the isomorphism (29) in Hqe constructed above
restricts to an isomorphism (31). Let 𝐹 ∈ RHom(c,NA ) , (c,NB ) (A ⊗L B, C) and denote by
�̄� its image in RHomc (A,RHomc (B, C)) via (29). Then we have that

𝐻0
(
𝐻0 (�̄�) (𝐴)

)
(𝐵) = 𝐻0 (𝐹𝐴) (𝐵) = 0

for all 𝐵 ∈ NB and hence �̄� ∈ RHomc (A,RHomc,NB (B, C)). Now observe that, for all
𝐵 ∈ B, we have that

𝐻0
(
𝐻0 (�̄�) (𝐴)

)
(𝐵) = 𝐻0 (𝐹𝐴) (𝐵) = 𝐻0 (𝐹 (𝐴, 𝐵,−)) = 𝐻0 (𝐹𝐵) (𝐴) = 0

for all 𝐴 ∈ NA . Consequently, we have that 𝐻0 (�̄�) (𝐴) = 0 in 𝐻0 (RHomc,NB (B, C)) for
all 𝐴 ∈ NA and hence �̄� ∈ RHomc,NA (A,RHomc,NB (B, C)) as desired.

To conclude, it is enough to show that for all 𝐹 ∈ RHomc,c (A ⊗L B, C), if the image
�̄� of 𝐹 via (29) belongs to RHomc,NA (A,RHomc,NB (B, C)), then 𝐹 is an element of
RHom(c,NA ) , (c,NB ) (A ⊗L B, C). For all 𝐴 ∈ A, we have that

𝐻0 (𝐹𝐴) (𝐵) = 𝐻0
(
𝐻0 (�̄�) (𝐴)

)
(𝐵) = 0

for all 𝐵 ∈ NB , showing that, for all 𝐴 ∈ A, 𝐹𝐴 annihilates NB . On the other hand, for all
𝐵 ∈ B, we have that

𝐻0 (𝐹𝐵) (𝐴) = 𝐻0 (𝐹 (𝐴, 𝐵,−)) = 𝐻0
(
𝐻0 (�̄�) (𝐴)

)
(𝐵) = 0

for all 𝐴 ∈ NA , showing that, for all 𝐵 ∈ B, 𝐹𝐵 annihilates NA as desired. �

4.2. The tensor product of dg quotients. ConsiderA,B, C ∈ Hqewg and supposeA �B
exists. By Lemma 4.5 above and the universal property of �, we have an isomorphism in
Hqe

(37) RHomc (A � B, C) � RHomc,c (A ⊗L B, C),
for every well generated dg category C. Hence there exists, corresponding to the identity
quasi-representable module on the left hand side by taking C = A � B, a canonical bi-
cocontinuous quasi-representable module ⊗ ∈ 𝐻0 (RHomc,c (A ⊗L B,A � B)). We will
denote the induced functor at the level of homotopy by

⊗𝐻 0 : 𝐻0 (A ⊗L B) −→ 𝐻0 (A � B),
instead of our usual notation 𝐻0 (⊗). Let XA ⊆ A and XB ⊆ B be classes of objects. We
define the class
(38) XA ⊗𝐻 0 XB = {𝑋𝐴 ⊗𝐻 0 𝑋𝐵 | 𝑋𝐴 ∈ X𝐴, 𝑋𝐵 ∈ X𝐵}
of objects in 𝐻0 (A � B).
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Remark 4.6. Let C be a dg category. Observe that taking a class of objects in C is the same
as taking a class of objects in 𝐻0 (C) as Obj(𝐻0 (C)) = Obj(C).

In first place, let’s analyse the relation of the well generated tensor product and the
annihilation of classes of objects in Hqewg.

Proposition 4.7. Consider classes NA ⊆ 𝐻0 (A) and NB ⊆ 𝐻0 (B) of objects. The class

(39) NA �Cl NB = (NA ⊗𝐻 0 B) ∪ (A ⊗𝐻 0 NB) ⊆ 𝐻0 (A � B)
is such that

(40) RHomc,NA�ClNB (A � B, C) � RHom(c,NA ) , (c,NB ) (A ⊗L B, C).

Proof. We have the isomorphism in Hqe

RHomc (A � B, C) � RHomc,c (A ⊗L B, C)
from (37) given at the 𝐻0-level by composition with the canonical bicocontinuous quasi-
representable bimodule ⊗ between A ⊗L B and A � B. Then it is enough to see that this
isomorphism restricts to an isomorphism (40) in Hqe.

Consider 𝐹 ∈ RHomc,NA�ClNB (A � B, C). Then 𝐹 ⊗L
A�B ⊗ ∈ 𝐻

0 (RHomc,c (A ⊗L

B, C)) is trivially seen to biannihilate (NA-NB).
On the other hand, given any 𝐺 ∈ RHom(c,NA ) , (c,NB ) (A ⊗L B, C), we have that

𝐺 � 𝐹 ⊗L
A�B ⊗ ∈ 𝐻

0 (RHom(c,NA ) , (c,NB ) (A ⊗L B, C))
for some 𝐹 ∈ RHomc (A � B, C). Consequently, for every object 𝐵 ∈ B, we have that
𝐻0 (𝐹) (N𝐴⊗𝐻 0 𝐵) � 𝐻0 (𝐺) (NA , 𝐵) = 0 in 𝐻0 (C) and, similarly, for every object 𝐴 ∈ A,
𝐻0 (𝐹) (𝐴 ⊗𝐻 0 NB) � 𝐻0 (𝐺) (𝐴,NB) = 0 in 𝐻0 (C). Thus we have that 𝐻0 (𝐹) annihilates
NA �Cl NB , therefore 𝐹 ∈ RHomc,NA�ClNB (A � B, C) as desired. �

Definition 4.8. We will call NA �Cl NB the tensor product of classes of objects NA and
NB .

Remark 4.9. Let B, C be well generated dg categories and let N be a class of objects in
B. Let 〈N〉 ⊆ 𝐻0 (B) be the smallest localising subcategory containing N . Then, given
𝐹 ∈ RHomc (B, C), the induced 𝐻0 (𝐹) : 𝐻0 (B) −→ 𝐻0 (C) is exact and cocontinuous.
As a consequence, Ker(𝐻0 (𝐹)) is a localising subcategory of 𝐻0 (B). It follows that

(41) RHomc,N (B, C) = RHomc, 〈N〉 (B, C).

Lemma 4.10. Let A, B be two well generated dg categories and WA ⊆ 𝐻0 (A) and
WB ⊆ 𝐻0 (B) localising subcategories generated by sets. Let GA (resp. GB) be a set of
generators of 𝐻0 (A) (resp. 𝐻0 (B)) and NA (resp. NB) be a set of generators ofWA
(resp. WB). We have that:

〈WA �ClWB〉 = 〈(NA ⊗𝐻 0 GB) ∪ (GA ⊗𝐻 0 NB)〉.
Hence 〈WA �ClWB〉 is generated by a set of objects.

Proof. By definition we have that

〈WA �ClWB〉 = 〈(〈NA〉 ⊗𝐻 0 B) ∪ (A ⊗𝐻 0 〈NB〉)〉.
As it is a localising subcategory and it trivially contains NA ⊗𝐻 0 GB ∪ GA ⊗𝐻 0 NB , we
have that 〈NA ⊗𝐻 0 GB ∪ GA ⊗𝐻 0 NB〉 ⊆ 〈WA �ClWB〉.

In order to prove the other inclusion, we consider an element 𝑋 ∈ 〈NA〉 ⊗𝐻 0 B. If it
belonged toA⊗𝐻 0 〈NB〉, we argue analogously. We know we can choose regular cardinals
𝛼 and 𝛽 such that the generators NA are all 𝛼-compact inWA and the generators GB are
all 𝛽-compact in B. Combining [25, Lem 4.4.5 & Lem B.1.3], we have that

𝑋 � 𝑊 ⊗𝐻 0 𝐵,
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where 𝑊 (resp. 𝐵) can be written in terms of objects in NA (resp. in GB) by using
coproducts, cones, direct summands and shifts. As ⊗𝐻 0 is bicocontinuous and an exact
functor in each variable, we have that 𝑋 can be written using coproducts, cones, direct
summands and shifts in terms of elements of the form 𝑁 ⊗𝐻 0 𝐺 where 𝑁 ∈ NA and
𝐺 ∈ GB . Therefore, 𝑋 is an element of 〈NA ⊗𝐻 0 GB ∪ GA ⊗𝐻 0 NB〉. Consequently, we
also have an inclusion 〈WA �ClWB〉 ⊆ 〈NA ⊗𝐻 0 GB ∪ GA ⊗𝐻 0 NB〉 which concludes
the proof. �

Theorem 4.11. LetA, B be two well generated dg categories such thatA �B exists, and
consider WA ⊆ 𝐻0 (A) and WB ⊆ 𝐻0 (B) localising subcategories generated by sets.
We have

(42)
A
WA

�
B
WB

�
A � B

〈WA �ClWB〉
in Hqewg.

Proof. The subcategory 〈WA�ClWB〉 ⊆ 𝐻0 (A�B) is a localising subcategory generated
by a set of objects as proved in Lemma 4.10. Hence, A � B/〈WA �Cl WB〉 is a well
generated dg category. If we show that it satisfies the universal property (28), we conclude
our argument. For any well generated dg category C, we have:

RHomc (
A � B

〈WA �ClWB〉
, C) � RHomc, 〈WA�ClWB 〉 (A � B, C)

� RHomc,WA�ClWB (A � B, C)
� RHom(c,WA ) , (c,WB ) (A ⊗L B, C)
� RHomc,WA (A,RHomc,WB (B, C))

� RHomc (
A
WA

,RHomc (
B
WB

, C)),

where the first and last isomorphisms come from the universal property of the dg quo-
tient in Hqewg (see (10)), the second follows from (41) above, the third one is given by
Proposition 4.7 and the fourth one by Lemma 4.5. �

Corollary 4.12. LetA,B be two well generated dg categories. If the tensor productA�B
exists, so does the well generated tensor product between any two dg quotients of A, B
with respect to localising subcategories generated by a set of objects.

Proof. This is a direct consequence of Theorem 4.11. �

4.3. Tensor product of well generated dg categories. In this section we show that the
well generated tensor product exists and we provide a construction.

We will proceed as follows. We will show that the well generated tensor product of
derived dg categories exists and it is again a derived dg category. This result will allow us,
using Theorem 3.17, to approach the construction of the tensor product for arbitrary well
generated dg categories making essential use of Corollary 4.12 above.

Proposition 4.13. Consider small dg categories 𝔞 and 𝔟. In Hqewg, we have

(43) D(𝔞) � D(𝔟) � D(𝔞 ⊗L 𝔟).

Proof. For a well generated dg category C, we have

RHomc (D(𝔞 ⊗L 𝔟), C) � RHom(𝔞 ⊗L 𝔟, C)
� RHom(𝔞,RHom(𝔟, C))
� RHomc (D(𝔞),RHomc (D(𝔟), C))

where the first and the last isomorphisms are given by (21) and the second one is by the ⊗L

- RHom-adjunction in Hqe. �
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We are finally in the position to prove the existence of the well generated tensor product.

Theorem 4.14. Let A, B be two well generated dg categories such that A � D(𝔞)/W𝔞

and B � D(𝔟)/W𝔟 in Hqe for small dg categories 𝔞, 𝔟 withW𝔞 ⊆ D(𝔞) andW𝔟 ⊆ D(𝔟)
localising subcategories generated by a set of objects. Then, the well generated tensor
product of A and B exists and it is given by

(44) A � B � D(𝔞 ⊗L 𝔟)/〈W𝔞 �ClW𝔟〉.

In particular, A � B is independent of the chosen realisations of A and B.

Proof. We have A � D(𝔞)/W𝔞 and B � D(𝔟)/W𝔟 withW𝔞 andW𝔟 localising subcate-
gories generated by a set of objects. By Proposition 4.13 we know that D(𝔞) � D(𝔟) exists
and equals D(𝔞⊗L𝔟). Then, by Theorem 4.11, we have thatA�B � D(𝔞)/W𝔞�D(𝔟)/W𝔟

exists and it is given by D(𝔞 ⊗L 𝔟)/〈W𝔞 �ClW𝔟〉, and it is obviously independent of the
realizations chosen, as it fulfils the universal property. �

Corollary 4.15. The homotopy category Hqewg of well generated dg categories with co-
continuous quasi-functors is symmetric monoidal closed.

Proof. This follows from Theorem 4.14 and Theorem 3.31. �

4.4. Tensor product of localising subcategories. In this section we provide an alternative
description of the tensor product from §4.3, in the spirit of [20, §2.5], which does not appeal
to choices of generators of localising subcategories. In the next section, this construction
will lead, via the equivalent approaches to localisation theory described in §3.2, to a
description of the tensor product in terms of Bousfield localisations (in the spirit of [20,
§2.6]), which will be used in §5.

Let 𝔞, 𝔟 be two small dg categories and consider the derived dg categories D(𝔞) and
D(𝔟). LetW𝔞 ⊆ D(𝔞) andW𝔟 ⊆ D(𝔟) be localising subcategories generated by sets of
objects. Inspired upon the construction of � above, we can define a tensor product of
localising subcategories generated by a set as follows.

Definition 4.16. With the notations above, we put

(45) W𝔞 �W𝔟 = 〈W𝔞 �ClW𝔟〉.

We define one-sided localising subcategories of D(𝔞 ⊗L 𝔟) as follows:

(46)
W1 B {𝐹 ∈ D(𝔞 ⊗L 𝔟) |𝐹 (−, 𝐵) ∈ W𝔞 for all 𝐵 ∈ 𝔟}
W2 B {𝐹 ∈ D(𝔞 ⊗L 𝔟) |𝐹 (𝐴,−) ∈ W𝔟 for all 𝐴 ∈ 𝔞}

Theorem 4.17. The tensor product of localising subcategories generated by a setW𝔞�W𝔟

is given by
W1 ∨W2 = 〈W1 ∪W2〉

in the poset𝑊dg of localising subcategories of D(𝔞 ⊗L 𝔟) generated by a set of objects.

In order to prove this result, we first provide an explicit description of the quasi-
representable bimodule ⊗ between D(𝔞) ⊗L D(𝔟) and D(𝔞) � D(𝔟) � D(𝔞 ⊗L 𝔟) (see
§4).

Lemma 4.18. Let 𝔞 and 𝔟 be small dg categories and consider the canonical bimodule
⊗ ∈ RHomc,c (D(𝔞) ⊗L D(𝔟),D(𝔞 ⊗L 𝔟)). Then, given 𝐹 ∈ D(𝔞), 𝐺 ∈ D(𝔟), we have that:

(47) (𝐹 ⊗𝐻 0 𝐺) (𝐴, 𝐵) = 𝐹 (𝐴) ⊗L 𝐺 (𝐵)

in D(𝑘) for all and 𝐴 ∈ 𝔞, 𝐵 ∈ 𝔟.
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Proof. Recall that given 𝔠 a small dg category, representables {𝔠(−, 𝐶)}𝐶∈𝔠 form a set of
compact generators of D(𝔠). Consequently, we have that 𝐹 (resp. 𝐺) can be written in terms
of representables in D(𝔞) (resp. in D(𝔟)) by using coproducts, cones and shifts. Because
⊗𝐻 0 is bicocontinuous and exact in each variable, and thus commutes with coproducts,
cones and shifts in both variables, 𝐹 ⊗𝐻 0 𝐺 can be also written in D(𝔞 ⊗L 𝔟) in terms of
elements of the form 𝔞(−, 𝐴) ⊗𝐻 0 𝔟(−, 𝐵) using direct sums, cones and shifts.

Now recall that ⊗ is just the image of the identity in 𝐻0 (RHomc (D(𝔞⊗L 𝔟),D(𝔞⊗L 𝔟)))
via the chain of isomorphisms

RHomc (D(𝔞 ⊗L 𝔟),D(𝔞 ⊗L 𝔟))) � RHom(𝔞 ⊗L 𝔟,D(𝔞 ⊗L 𝔟))
� (RHom(𝔞,RHom(𝔟,D(𝔞 ⊗L 𝔟)))
� RHomc (D(𝔞),RHomc (D(𝔟),D(𝔞 ⊗L 𝔟))
� RHomc,c (D(𝔞) ⊗L D(𝔟),D(𝔞 ⊗L 𝔟))

defined above (see (21), (4) and (29)). On the other hand, observe that the identity in
RHomc (D(𝔞 ⊗L 𝔟),D(𝔞 ⊗L 𝔟)) gets mapped under the first quasi-equivalence (21) to the
Yoneda embedding 𝔞⊗L 𝔟 −→ D(𝔞⊗L 𝔟). Therefore, when restricted to the representables,
one just has that

𝔞(−, 𝐴) ⊗𝐻 0 𝔟(−, 𝐵) = (𝔞 ⊗L 𝔟) (−, (𝐴, 𝐵)).
Now observe that

(48)

(
(𝔞 ⊗L 𝔟) (−, (𝐴, 𝐵))

)
(𝐴′, 𝐵′) = (𝑄(𝔞) ⊗ 𝔟) ((𝐴′, 𝐵′), (𝐴, 𝐵))

= 𝑄(𝔞) (𝐴′, 𝐴) ⊗ 𝔟(𝐵′, 𝐵)
= 𝔞(𝐴′, 𝐴) ⊗L 𝔟(𝐵′, 𝐵),

where𝑄 denotes the cofibrant replacement functor in dgcat, which can be chosen such that
𝑄(𝔞) −→ 𝔞 is the identity on objects (Proposition 2.1). In addition, also by Proposition 2.1,
we have that the induced 𝑄(𝔞) (𝐴′, 𝐴) −→ 𝔞(𝐴′, 𝐴) is a cofibrant replacement for 𝔞(𝐴′, 𝐴)
in C(𝑘).

Recall that coproducts, cones and shifts are point-wise in D(𝔞 ⊗L 𝔟), and hence the
evaluation of 𝐹 ⊗𝐻 0 𝐺 at any point (𝐴′, 𝐵′) can be written in terms of elements of the form
𝔞(𝐴′, 𝐴) ⊗L 𝔟(𝐵′, 𝐵) using coproducts, cones and shifts. But as ⊗L is bicocontinuous in
D(𝑘) and applying again that coproducts, cones and shifts are point-wise in D(𝔞) and D(𝔟),
we obtain that

(𝐹 ⊗𝐻 0 𝐺) (𝐴′, 𝐵′) = 𝐹 (𝐴′) ⊗L 𝐺 (𝐵′)
for all (𝐴′, 𝐵′) ∈ 𝔞 ⊗L 𝔟 and we conclude. �

We proceed now to prove Theorem 4.17:

Proof. LetNA andNB be sets of generators ofW𝔞 andW𝔟 respectively. Consider the set
of compact objects GD(𝔞) = {𝔞(−, 𝐴)}𝐴∈𝔞 as a set of generators of D(𝔞) and respectively the
set of compact objectsGD(𝔟) = {𝔟(−, 𝐵)}𝐵∈𝔟 as a set of generators of D(𝔟). By Lemma 3.20
we know thatW1 andW2 are localising subcategories in D(𝔞 ⊗L 𝔟) generated by a set of
objects. More concretely, it follows from Lemma 3.19 and Lemma 3.20 combined with
Lemma 4.18 that

(49)
W1 = 〈NA ⊗𝐻 0 GD(𝔟)〉;
W2 = 〈GD(𝔞) ⊗𝐻 0 NB〉.

Hence, we can conclude that

W𝔞�W𝔟 = 〈W𝔞�ClW𝔟〉 = 〈〈NA⊗𝐻 0GD(𝔟)〉∪〈GD(𝔞)⊗𝐻 0NB〉〉 = 〈W1∪W2〉 =W1∨W2,

where the second equality is a direct consequence of Lemma 4.10. �
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4.5. Tensor product of dg Bousfield localisations. Let 𝔞, 𝔟 be two small dg categories
and consider the derived dg categories D(𝔞) and D(𝔟). Consider respective Bousfield
localisations with kernels generated by a set of objects given by the dg subcategories
L𝔞 ⊆ D(𝔞) and L𝔟 ⊆ D(𝔟) with respective quasi-left adjoints 𝐹𝔞 and 𝐹𝔟. Denote by
W𝔞 = Ker(𝐻0 (𝐹𝔞)) andW𝔟 = Ker(𝐻0 (𝐹𝔟)) the corresponding localising subcategories
generated by a set.

Consider the following full dg subcategories of D(𝔞 ⊗L 𝔟):
• L1 = {𝐹 ∈ D(𝔞 ⊗L 𝔟) | 𝐹 (−, 𝐵) ∈ L𝔞 for all 𝐵 ∈ 𝔟} ⊆ D(𝔞 ⊗L 𝔟);
• L2 = {𝐹 ∈ D(𝔞 ⊗L 𝔟) | 𝐹 (𝐴,−) ∈ L𝔟 for all 𝐴 ∈ 𝔞} ⊆ D(𝔞 ⊗L 𝔟).

The natural functors
• 𝐹1 : D(𝔞 ⊗L 𝔟) −→ 𝐻0 (L1) : 𝑋 ↦−→

(
𝐹1 (𝑋) : (𝐴, 𝐵) ↦−→ 𝐻0 (𝐹𝔞) (𝑋 (−, 𝐵)) (𝐴)

)
;

• 𝐹2 : D(𝔞 ⊗L 𝔟) −→ 𝐻0 (L2) : 𝑋 ↦−→
(
𝐹2 (𝑋) : (𝐴, 𝐵) ↦−→ 𝐻0 (𝐹𝔟) (𝑋 (𝐴,−))(𝐵)

)
;

can be easily seen to be the left adjoints for the inclusions 𝐻0 (𝑖1) : 𝐻0 (L1) −→ D(𝔞 ⊗L 𝔟)
and 𝐻0 (𝑖2) : 𝐻0 (L2) −→ D(𝔞 ⊗L 𝔟) respectively. We have thus that L1and L2 are
Bousfield localisations of D(𝔞⊗L 𝔟). Additionally, following the notations from (46) above,
one can observe that

Ker(𝐹1) = {𝐹 ∈ D(𝔞 ⊗L 𝔟) | 𝐹 (−, 𝐵) ∈ W𝔞 for all 𝐵 ∈ 𝔟} =W1,

and analogously
Ker(𝐹2) = {𝐹 ∈ D(𝔞 ⊗L 𝔟) | 𝐹 (𝐴,−) ∈ W𝔟 for all 𝐴 ∈ 𝔞} =W2.

As W𝔞 and W𝔟 are by hypothesis generated by a set, we have, as a consequence of
Lemma 3.20 above, thatW1 = Ker(𝐹1) andW2 = Ker(𝐹2) are also generated by a set of
objects. Hence 𝑖1 and 𝑖2 are Bousfield localisations of D(𝔞 ⊗L 𝔟) with kernel of the left
adjoint at the 0th-cohomology level generated by a set of objects and we have the following:

Proposition 4.19. The localising subcategory W1 (resp. W2) and the well generated
Bousfield localisation L1 (resp. L2) correspond under the isomorphism between𝑊dg and
𝐿

op
dg.

Theorem 4.20. The tensor product L𝔞 � L𝔟 is given by
L1 ∧ L2 = L1 ∩ L2

in the poset 𝐿dg of dg Bousfield localisations of D(𝔞 ⊗L 𝔟) with kernel of the left adjoint at
the 0th-cohomology level generated by a set of objects.

Proof. We have that:
L1 ∩ L2 = L1 ∧ L2

= (W1 ∨W2)⊥

= 〈W1 ∪W2〉⊥

= (W𝔞 �W𝔟)⊥

� D(𝔞 ⊗L 𝔟)/W𝔞 �W𝔟

� D(𝔞)/W𝔞 � D(𝔟)/W𝔟

= L𝔞 � L𝔟

where the first equality follows from Lemma 4.21 below, and the fourth is given by Theo-
rem 4.17. �

Lemma 4.21. Let C be a well generated dg category. Given L and L ′ two dg Bousfield
localisations of C, we have that
(50) L ∧ L ′ = L ∩ L ′

in the poset 𝐿dg of dg Bousfield localisations of C with kernel of the left adjoint at the
0th-cohomology level generated by a set of objects.
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Proof. Observe we have that:
L ∧ L ′ = (WL ∨WL′)⊥

= 〈WL ∪WL′〉⊥

=W⊥
L ∩W

⊥
L′

= L ∩ L ′

where the first and last equalities are given by the isomorphism of posets described in
§3.2.3, the second by the description of the poset of localising subcategories generated by
a set and the third by Proposition 3.6. �

5. Tensor product in terms of 𝛼-cocontinuous derived categories

In this section we provide the description of the tensor product of well generated dg
categories when we realise them as 𝛼-cocontinuous dg categories. We make use of the
description of the tensor product of Bousfield localisations of dg derived categories provided
in §4.5.

Proposition 5.1. Let 𝔞, 𝔟 be two homotopically 𝛼-cocomplete small dg categories and
consider their respective 𝛼-cocontinuous dg derived categories D𝛼 (𝔞),D𝛼 (𝔟). Then we
have that

D𝛼 (𝔞) � D𝛼 (𝔟) = D𝛼,𝛼 (𝔞 ⊗L 𝔟),
where D𝛼,𝛼 (𝔞 ⊗L 𝔟) denotes the full dg subcategory of D(𝔞) � D(𝔟) = D(𝔞 ⊗L 𝔟) formed
by the bimodules 𝐹 such that 𝐹 (𝐴,−) ∈ D𝛼 (𝔟) for all 𝐴 ∈ 𝔞 and 𝐹 (−, 𝐵) ∈ D𝛼 (𝔞) for all
𝐵 ∈ 𝔟.

Proof. This follows from Theorem 4.20. �

Consider 𝔞, 𝔟 two homotopically 𝛼-cocomplete small dg categories. We know that
D𝛼 (𝔞) � D𝛼 (𝔟) = D𝛼,𝛼 (𝔞 ⊗L 𝔟) is a well generated dg category, and hence, there exists
a regular cardinal 𝛽 and a homotopically 𝛽-cocomplete small dg category 𝔠 such that
D𝛼,𝛼 (𝔞 ⊗L 𝔟) � D𝛽 (𝔠). It is reasonable to ask the following questions:

• Can we find such a 𝔠 with 𝛽 = 𝛼? Or in other words, is the tensor product of
𝛼-compactly generated dg categories again 𝛼-compactly generated?
• Can 𝔠 be found in terms of the provided 𝔞 and 𝔟?

The answer to both questions is affirmative (see Proposition 5.6 and Corollary 5.7 below).
Showing this will be the main goal of this chapter.

5.1. Tensor product of homotopically 𝛼-cocomplete dg categories. Fixed a 𝔘-small
regular cardinal 𝛼, we can define a homotopically 𝛼-cocomplete tensor product in the full
subcategory Hqe𝛼 of Hqe given by the homotopically 𝛼-cocomplete 𝔘-small dg categories.

Definition 5.2. Let 𝔞 and 𝔟 be homotopically 𝛼-cocomplete dg categories. A homotopically
𝛼-cocomplete tensor product of 𝔞 and 𝔟 is defined as a homotopically 𝛼-cocomplete small
dg category 𝔞 ⊗L

𝛼 𝔟 such that the following universal property holds in Hqe𝛼:

(51) RHom𝛼 (𝔞 ⊗L
𝛼 𝔟, 𝔠) � RHom𝛼 (𝔞,RHom𝛼 (𝔟, 𝔠)).

Remark 5.3. Observe that for 𝛼 = ℵ0, as the homotopy category of a dg category is in
particular Ab-enriched, we have that for 𝔞, 𝔟 ∈ Hqeℵ0 :

• RHomℵ0 (𝔞, 𝔟) = RHom(𝔞, 𝔟);
• and hence 𝔞 ⊗L

ℵ0
𝔟 = 𝔞 ⊗L 𝔟.

Remark 5.4. The following theorem, together with Proposition 5.6, constructs a homotopi-
cally 𝛼-cocomplete dg category 𝔡 such that D𝛼 (𝔡) � D𝛼,𝛼 (𝔞 ⊗L 𝔟) in Hqe, and shows that
𝔡 is actually the homotopically 𝛼-cocomplete tensor product of 𝔞 and 𝔟. The argument,
despite the technicalities intrinsic to this setup, is essentially of topos theoretic nature. Let
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us describe here the outline of the proof roughly, ignoring the fact that we are working with
cofibrant objects, and not just categories of dg modules, and that we are working with quasi-
functors, instead of with dg functors. We first construct a candidate 𝔡 for the homotopically
𝛼-cocomplete tensor product of 𝔞 and 𝔟 together with a dg functor 𝐹 : 𝔞 ⊗L 𝔟 −→ 𝔡

which is 𝛼-cocontinuous in each variable. Intuitively, one can think of these small dg
categories as “dg Grothendieck sites”. Then, the fact that 𝐹 is 𝛼-cocontinuous in each
variable allows to observe that the restriction of scalars 𝐹∗ : D(𝔡) −→ D(𝔞 ⊗L 𝔟) restricts
to a map 𝐹𝑠 : D𝛼 (𝔡) −→ D𝛼,𝛼 (𝔞 ⊗L 𝔟) between the “categories of sheaves”. This is, in
topos theoretical language, saying that 𝐹 is a “continuous morphism of sites”. Then, using
a parallel argument to that of classical topos theory, one has that 𝐹𝑠 has a left adjoint, that
we will denote in the proof by Ind𝛼

𝐹
such that

𝔞 ⊗L 𝔟 𝔡

D(𝔞 ⊗L 𝔟) D(𝔡)

D𝛼,𝛼 (𝔞 ⊗L 𝔟) D𝛼 (𝔡),

𝑌
𝔞⊗L𝔟

𝐹

𝑌𝔡

𝑎
𝔞⊗L𝔟

𝐹!

𝑎𝔡

Ind𝛼
𝐹

is a commutative diagram. In particular, one has that Ind𝛼𝐹 = 𝑎𝔡 ◦ 𝐹! ◦ 𝑖𝔞⊗L𝔟, where
𝑖𝔞⊗L𝔟 : D𝛼,𝛼 (𝔞 ⊗L 𝔟) ⊆ D(𝔞 ⊗L 𝔟) denotes the dg embedding. Then, by means of the
concrete construction of 𝔡, one can conclude, and we will do so combining Theorem 5.5
and Proposition 5.6, that Ind𝛼𝐹 is an isomorphism in Hqe.

Theorem 5.5. Let 𝛼 be a regular cardinal and 𝔞, 𝔟 homotopically 𝛼-cocomplete 𝔘-small
dg categories. Then, there exists a homotopically 𝛼-cocomplete 𝔘-small dg category 𝔡

such that
(52) RHom𝛼 (𝔞,RHom𝛼 (𝔟, C)) � RHom𝛼 (𝔡, C)
for all 𝔘-well generated 𝔙-small dg category C. Moreover, we have that 𝔡 = 𝔞 ⊗L

𝛼 𝔟.

Proof. The construction of 𝔡 will be obtained by mimicking the construction of the tensor
product of 𝛼-cocomplete 𝑘-linear categories following [16, §6.5], or [15, §10] and [19,
§2.4] for the concrete case of 𝛼 = ℵ0.

Consider the Yoneda embedding 𝑌𝔞⊗L𝔟 : 𝔞 ⊗L 𝔟 −→ D(𝔞 ⊗L 𝔟) and the quasi-adjunction
𝑎𝔞⊗L𝔟 a𝐻 0 𝑖𝔞⊗L𝔟 where 𝑖𝔞⊗L𝔟 : D𝛼,𝛼 (𝔞 ⊗L 𝔟) ⊆ D(𝔞 ⊗L 𝔟) is the natural inclusion. Recall
that 𝑎𝔞⊗L𝔟 ∈ RHomc (D(𝔞 ⊗L 𝔟),D𝛼,𝛼 (𝔞 ⊗L 𝔟)).

Consider the bimodule 𝑎𝔞⊗L𝔟 ⊗L
D(𝔞⊗L𝔟) 𝑌𝔞⊗L𝔟 ∈ RHom(𝔞⊗L 𝔟,D𝛼,𝛼 (𝔞⊗L 𝔟)). We prove

that 𝑎𝔞⊗L𝔟 ⊗L
D(𝔞⊗L𝔟) 𝑌𝔞⊗L𝔟 is bi-𝛼-cocontinuous. Observe that that is the case if and only if

D𝛼,𝛼 (𝔞 ⊗L 𝔟) (𝐻0 (𝑎𝔞⊗L𝔟) ◦ 𝐻0 (𝑌𝔞⊗L𝔟) (−,−), 𝑋) : (𝔞 ⊗L 𝔟)op −→ D(𝑘)
sends 𝛼-small coproducts in both variables to 𝛼-small products for all 𝑋 ∈ D𝛼,𝛼 (𝔞 ⊗L 𝔟),
where we put D𝛼,𝛼 (𝔞 ⊗L 𝔟) = 𝐻0 (D𝛼,𝛼 (𝔞 ⊗L 𝔟)). We have that

D𝛼,𝛼 (𝔞 ⊗L 𝔟) (𝐻0 (𝑎𝔞⊗L𝔟) ◦ 𝐻0 (𝑌𝔞⊗L𝔟) (−,−), 𝑋) = D(𝔞 ⊗L 𝔟) (𝐻0 (𝑌𝔞⊗L𝔟) (−,−), 𝑋) =
= 𝐻0 (𝑋) (−,−),

which, because 𝑋 ∈ D𝛼,𝛼 (𝔞 ⊗L 𝔟), sends 𝛼-small coproducts in both variables to 𝛼-small
products. Consequently, 𝑎𝔞⊗L𝔟 ⊗L

D(𝔞⊗L𝔟) 𝑌𝔞⊗L𝔟 is bi-𝛼-cocontinuous.
Denote byG the set of representables in D(𝔞⊗L𝔟) and considerT ⊆ 𝐻0 (D𝛼,𝛼 (𝔞⊗L𝔟)) =

D𝛼,𝛼 (𝔞 ⊗L 𝔟) the closure of 𝐻0 (𝑎𝔞⊗L𝔟) (G) under 𝛼-small coproducts. Denote by 𝔡 ⊆
qrep(D𝛼,𝛼 (𝔞⊗L𝔟)) the enhancement of T via the natural enhancement qrep(D𝛼,𝛼 (𝔞⊗L𝔟))
of D𝛼,𝛼 (𝔞 ⊗L 𝔟). In particular, observe that 𝔡 is an essentially small dg category which is
homotopically 𝛼-cocomplete.
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Consider the functor
𝐹 : 𝔞 ⊗L 𝔟 −→ 𝔡

induced by the bimodule 𝑎𝔞⊗L𝔟 ⊗L
D(𝔞⊗L𝔟) 𝑌𝔞⊗L𝔟, which remains bi-𝛼-cocontinuous.

Consider C a well generated dg category. We are going to show that
(53) 𝜙 : [𝔡, C]𝛼 −→ [𝔞 ⊗L 𝔟, C]𝛼,𝛼 : 𝑓 ↦−→ 𝑓 ◦ [𝐹]
is a bĳection.

Observe that we have

(54)

[D𝛼,𝛼 (𝔞 ⊗L 𝔟), C]c � [D𝛼 (𝔞),RHomc (D𝛼 (𝔟), C)]c
� [D𝛼 (𝔞),RHom𝛼 (𝔟, C)]c
� [𝔞,RHom𝛼 (𝔟, C)]𝛼
� [𝔞 ⊗L 𝔟, C]𝛼,𝛼

where the first bĳection follows from the definition of the tensor product of well generated
dg categories together with Proposition 5.1, the second from Proposition 3.28, the third
from Theorem 3.31 together with Proposition 3.28 and the last one from the ⊗L − RHom
adjunction. Observe that an element 𝑔 ∈ [D𝛼,𝛼 (𝔞⊗L𝔟), C]c gets sent to 𝑔◦ [𝑌 ′𝔞 ⊗𝐻 0𝑌 ′

𝔟
] iso ∈

[𝔞 ⊗L 𝔟, C]𝛼,𝛼. If we denote by 𝑎𝔞 (resp. 𝑎𝔟) the quasi-left adjoint of the inclusion
𝑖𝔞 : D𝛼 (𝔞) ⊆ D(𝔞) (resp. D𝛼 (𝔟) ⊆ D(𝔟)), it is easy to see, using the construction of
the tensor product in terms of quotients as exposed in Theorem 4.11, that 𝑔 ◦ [𝑌 ′𝔞 ⊗𝐻 0

𝑌 ′
𝔟
] iso = 𝑔 ◦ [(𝑎𝔞 ⊗L

D(𝔞) 𝑌𝔞) ⊗𝐻 0 (𝑎𝔟 ⊗L
D(𝔟) 𝑌𝔟)] iso = 𝑔 ◦ [𝑎𝔞⊗L𝔟] iso ◦ [𝑌𝔞⊗L𝔟]. We denote by

𝑡𝔞⊗L𝔟,C : [𝔞 ⊗L 𝔟, C]𝛼,𝛼 −→ [D𝛼,𝛼 (𝔞 ⊗L 𝔟), C]c the inverse of this bĳection.
We have a map

(55) [𝔞 ⊗L 𝔟, C]𝛼,𝛼
𝑡
𝔞⊗L𝔟,C−→
�
[D𝛼,𝛼 (𝔞 ⊗L 𝔟), C]c −→ [𝔡, C]𝛼 : 𝑓 ↦−→ 𝑡𝔞⊗L𝔟,C ( 𝑓 ) ◦ 𝑗 ,

where 𝑗 = [𝑌D𝛼,𝛼 (𝔞⊗L𝔟) ]−1 ◦ [𝑖] ∈ [𝔡,D𝛼,𝛼 (𝔞 ⊗L 𝔟)], with 𝑖 : 𝔡 ⊆ qrep(D𝛼,𝛼 (𝔞 ⊗L 𝔟)) and
𝑌D𝛼,𝛼 (𝔞⊗L𝔟) : D𝛼,𝛼 (𝔞⊗L 𝔟) −→ qrep(D𝛼,𝛼 (𝔞⊗L 𝔟)) the natural quasi-equivalence provided
by the Yoneda embedding. We are going to show that this is an inverse map of (53).

We have that 𝑡𝔞⊗L𝔟 ( 𝑓 ) ◦ 𝑗 ◦ [𝐹] = 𝑡𝔞⊗L𝔟 ( 𝑓 ) ◦ [𝑎𝔞⊗L𝔟] iso ◦ [𝑌𝔞⊗L𝔟] = 𝑓 for any element
𝑓 ∈ [𝔞 ⊗L 𝔟, C]𝛼,𝛼. Hence (55) is a right inverse of (53).

Now we want to show that 𝑡𝔞⊗L𝔟,C (𝑔◦ [𝐹]) ◦ 𝑗 = 𝑔. This equality is more involved and in
order to prove it we will use the topos theoretical argument mentioned in Remark 5.4 above,
which can also be seen as an 𝛼-version of the usual extensions of dg functors. Denote by
Ind𝛼

𝐹
B 𝑡𝔞⊗L𝔟,D𝛼 (𝔡) ( [𝑎𝔡] iso ◦ [𝑌𝔡] ◦ [𝐹]) ∈ [D𝛼,𝛼 (𝔞 ⊗L 𝔟),D𝛼 (𝔡)]c. We hence have that

(56) Ind𝛼
𝐹 ◦ [𝑎𝔞⊗L𝔟] iso ◦ [𝑌𝔞⊗L𝔟] = [𝑎𝔡] iso ◦ [𝑌𝔡] ◦ [𝐹] .

Observe that Ind𝛼
𝐹
◦ [𝑎𝔞⊗L𝔟] iso = [𝑎𝔡] iso ◦ [𝐹!] and hence Ind𝛼

𝐹
= [𝑎𝔡] iso ◦ [𝐹!] ◦ [𝑖𝔞⊗L𝔟].

We claim that
(57) Ind𝛼

𝐹 ◦ 𝑗 = [𝑎𝔡] iso ◦ [𝑌𝔡] .
Observe this will be enough to conclude. Indeed, as Ind𝛼

𝐹
is cocontinuous, we have a

diagram

(58)
[𝔡, C]𝛼 [D𝛼 (𝔡), C]c

[𝔞 ⊗L 𝔟, C]𝛼,𝛼 [D𝛼,𝛼 (𝔞 ⊗L 𝔟), C]c,

�
𝑠

(−)◦[𝐹 ] (−)◦Ind𝛼
𝐹

�

𝑡
𝔞⊗L𝔟,C

which is commutative as a direct consequence of (56), where 𝑠 denotes the inverse of the
bĳection [D𝛼 (𝔡), C]c → [𝔡, C]𝛼 : 𝑓 ↦→ 𝑓 ◦ [𝑎𝔡] iso ◦ [𝑌𝔡] from Proposition 3.28. Then,
we have that

𝑡𝔞⊗L𝔟,C (𝑔 ◦ [𝐹]) ◦ 𝑗 = 𝑠( 𝑓 ) ◦ Ind𝛼
𝐹 ◦ 𝑗 = 𝑠( 𝑓 ) ◦ [𝑎𝔡] iso ◦ [𝑌𝔡] = 𝑓 ,
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where the second equality comes from (57). Consequently, (55) is also a left inverse of
(53), which concludes the argument.

It hence only remains to prove that (57) holds. Consider the dg functor 𝐹 : 𝔞 ⊗L 𝔟 −→ 𝔡

and the associated restriction 𝐹∗ : dgMod(𝔡) −→ dgMod(𝔞 ⊗L 𝔟) and extension 𝐹! :
D(𝔞⊗L 𝔟) −→ D(𝔡). Denote by 𝔡′ the full dg subcategory of D𝛼,𝛼 (𝔞⊗L 𝔟) quasi-equivalent
to 𝔡 via the quasi-equivalence 𝑌𝔞⊗L𝔟:

D𝛼,𝛼 (𝔞 ⊗L 𝔟) qrep(D𝛼,𝛼 (𝔞 ⊗L 𝔟))

𝔡′ 𝔡

�̄�
𝔞⊗L𝔟

∼

𝐼

𝐺
∼

𝑖

Observe that, for all 𝐷 ∈ 𝔡′,
𝐹∗ ◦ 𝑌𝔡 ◦ 𝐺 (𝐷) = 𝐹∗ (ℎ𝐺 (𝐷) ) =

= 𝔡(𝐹 (−), 𝐺 (𝐷)) =
= qrep(D𝛼,𝛼 (𝔞 ⊗L 𝔟)) (𝑖 ◦ 𝐹 (−), 𝑖 ◦ 𝐺 (𝐷)) =
= qrep(D𝛼,𝛼 (𝔞 ⊗L 𝔟)) (Φ𝑎

𝔞⊗L𝔟
◦ 𝑌𝔞⊗L𝔟 (−), 𝑖 ◦ 𝐺 (𝐷)).

We hence have that
𝑖𝔞⊗L𝔟 ◦ 𝐼 (𝐷) = D(𝔞 ⊗L 𝔟) (𝑌𝔞⊗L𝔟 (−), 𝑖𝔞⊗L𝔟 ◦ 𝐼 (𝐷)) −→

−→ qrep(D𝛼,𝛼 (𝔞 ⊗L 𝔟)) (Φ𝑎
𝔞⊗L𝔟
◦ 𝑌𝔞⊗L𝔟 (−),Φ𝑎

𝔞⊗L𝔟
◦ 𝑖𝔞⊗L𝔟 ◦ 𝐼 (𝐷)) =

= qrep(D𝛼,𝛼 (𝔞 ⊗L 𝔟)) (Φ𝑎
𝔞⊗L𝔟
◦ 𝑌𝔞⊗L𝔟 (−), 𝑖 ◦ 𝐺 (𝐷)).

Consequently, we have a natural transformation 𝑖𝔞⊗L𝔟 ◦ 𝐼 −→ 𝐹∗ ◦ 𝑌𝔡 ◦ 𝐺. By adjunction,
we have a natural transformation 𝐹! ◦ 𝑖𝔞⊗L𝔟 ◦ 𝐼 −→ 𝑌𝔡 ◦ 𝐺 and by composition a natural
transformation

(59) 𝛼 : Φ𝑎𝔡 ◦ 𝐹! ◦ 𝑖𝔞⊗L𝔟 ◦ 𝐼 −→ Φ𝑎𝔡 ◦ 𝑌𝔡 ◦ 𝐺.

Now, observe that every object 𝐷 ∈ 𝐻0 (𝔡′) is isomorphic to
∐

𝑖∈𝐼 𝐻
0 (𝐺)−1𝐻0 (𝐹) (𝐴𝑖 , 𝐵𝑖)

where the coproduct is 𝛼-small. Then we have that

(60)

𝐻0 (𝑎𝔡) ◦ 𝐻0 (𝐹! ◦ 𝑖𝔞⊗L𝔟 ◦ 𝐼) (𝐷) =

= 𝐻0 (𝑎𝔡) ◦ 𝐻0 (𝐹! ◦ 𝑖𝔞⊗L𝔟)
(∐
𝑖∈𝐼

𝐻0 (𝑎𝔞⊗L𝔟) ◦ 𝐻0 (𝑌𝔞⊗L𝔟) (𝐴𝑖 , 𝐵𝑖)
)
=

= 𝐻0 (𝑎𝔡) ◦ 𝐻0 (𝐹! ◦ 𝑖𝔞⊗L𝔟) ◦ 𝐻0 (𝑎𝔞⊗L𝔟)
(∐
𝑖∈𝐼

𝐻0 (𝑌𝔞⊗L𝔟) (𝐴𝑖 , 𝐵𝑖)
)
=

= 𝐻0 (𝑎𝔡) ◦ 𝐻0 (𝐹!)
(∐
𝑖∈𝐼

𝐻0 (𝑌𝔞⊗L𝔟) (𝐴𝑖 , 𝐵𝑖)
)
=

=
∐
𝑖∈𝐼

𝐻0 (𝑎𝔡) ◦ 𝐻0 (𝐹!) ◦ 𝐻0 (𝑌𝔞⊗L𝔟) (𝐴𝑖 , 𝐵𝑖) =

=
∐
𝑖∈𝐼

𝐻0 (𝑎𝔡) ◦ 𝐻0 (𝑌𝔡 ◦ 𝐹) (𝐴𝑖 , 𝐵𝑖) =

= 𝐻0 (𝑌 ′
𝔡
)
(∐
𝑖∈𝐼

𝐻0 (𝐹) (𝐴𝑖 , 𝐵𝑖)
)
=

= 𝐻0 (𝑎𝔡) ◦ 𝐻0 (𝑌𝔡 ◦ 𝐺) (𝐷),
where the only non-trivial equality is the third one. It follows from the fact that

𝐻0 (𝑎𝔡) ◦ 𝐻0 (𝐹! ◦ 𝑖𝔞⊗L𝔟) ◦ 𝐻0 (𝑎𝔞⊗L𝔟) = 𝐻0 (𝑎𝔡) ◦ 𝐻0 (𝐹!),
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which can be deduced by using the adjunctions 𝐻0 (𝑎𝔡) a 𝐻0 (𝑖𝔡), 𝐻0 (𝑎𝔞⊗L𝔟) a 𝐻0 (𝑖𝔞⊗L𝔟)
and 𝐻0 (𝐹!) a 𝐻0 (𝐹∗) together with the fact that the image of 𝐻0 (𝐹∗) (D𝛼 (𝔡)) lies in
D𝛼,𝛼 (𝔞 ⊗L 𝔟) ⊆ D(𝔞 ⊗L 𝔟). From (60), one can conclude that the natural transformation
𝛼 from (59) is a termwise homotopy equivalence and consequently, we have that [𝑎𝔡] iso ◦
[𝐹!] ◦ [𝑖𝔞⊗L𝔟] ◦ [𝐼] = [𝑎𝔡] iso ◦ [𝑌𝔡] ◦ [𝐺]. Thus, we have that

Ind𝛼
𝐹 ◦ 𝑗 = [𝑎𝔡] iso ◦ [𝐹!] ◦ [𝑖𝔞⊗L𝔟] ◦ [𝑌D𝛼,𝛼 (𝔞⊗L𝔟) ]−1 ◦ [𝑖] =

= [𝑎𝔡] iso ◦ [𝐹!] ◦ [𝑖𝔞⊗L𝔟] ◦ [𝐼] ◦ [𝐺]−1 =

= [𝑎𝔡] iso ◦ [𝑌𝔡] ◦ [𝐺] ◦ [𝐺]−1 =

= [𝑎𝔡] iso ◦ [𝑌𝔡],

as we wanted to show.
We hence have that 𝜙 : [𝔡, C]𝛼 −→ [𝔞 ⊗L 𝔟, C]𝛼,𝛼 : 𝑓 ↦−→ 𝑓 ◦ [𝐹] is a bĳection.

Given another small dg category 𝔢, we denote by [𝔡 ⊗L 𝔢, C] ′𝛼 the subset of [𝔡 ⊗L 𝔢, C] of
𝛼-cocontinuous morphisms in the first variable, and by [(𝔞 ⊗L 𝔟) ⊗L 𝔢, C] ′𝛼,𝛼 the subset
of [(𝔞 ⊗L 𝔟) ⊗L 𝔢, C] of 𝛼-cocontinuous morphisms in both the first and second variables.
We have the following diagram

(61)

[𝔢,RHom𝛼 (𝔡, C)] [𝔢,RHom𝛼 (𝔞,RHom𝛼 (𝔟, C))]

[
𝔡 ⊗L 𝔢, C

] ′
𝛼

[
(𝔞 ⊗L 𝔟) ⊗L 𝔢, C

] ′
𝛼,𝛼

[𝔡,RHom(𝔢, C)]𝛼
[
𝔞 ⊗L 𝔟,RHom(𝔢, C)

]
𝛼,𝛼

.

�

�

�

�

−◦[𝐹 ]

Observe that RHom(𝔢, C) is well generated as a direct consequence of Theorem 3.22, and
hence the horizontal arrow is a bĳection by (53). Thus, as a direct consequence of Yoneda
lemma, we have that RHom𝛼 (𝔡, C) � RHom𝛼 (𝔞,RHom𝛼 (𝔟, C)) in Hqe as we wanted to
show.

Now, given any homotopically 𝛼-cocomplete small dg category 𝔠, we want to show that
𝜙′ : [𝔡, 𝔠]𝛼 −→ [𝔞⊗L 𝔟, 𝔠]𝛼,𝛼 : 𝑓 ↦−→ 𝑓 ◦ [𝐹] is a bĳection. From the argument above, we
have that 𝜙 : [𝔡,D𝛼 (𝔠)]𝛼 −→ [𝔞 ⊗L 𝔟,D𝛼 (𝔠)]𝛼,𝛼 : 𝑓 ↦−→ 𝑓 ◦ [𝐹] is a bĳection. Observe
that the corestriction 𝑌 ′𝔠 : 𝔠 −→ D𝛼 (𝔠) of the Yoneda embedding induces injections

[𝔡, 𝔠]𝛼 ⊆ [𝔡,D𝛼 (𝔠)]𝛼
and

[𝔞 ⊗L 𝔟, 𝔠]𝛼,𝛼 ⊆ [𝔞 ⊗L 𝔟,D𝛼 (𝔠)]𝛼,𝛼 .
It is then easy to check that 𝜙′ can be obtained as the restriction of 𝜙 to [𝔡, 𝔠]𝛼, and hence
we have that 𝜙′ is injective. As the elements 𝐻0 (𝐹) (𝔞 ⊗L 𝔟) generate 𝐻0 (𝔡) under 𝛼-small
coproducts and 𝑌 ′𝔠 is 𝛼-cocontinuous, we can conclude that it is also surjective. Then, a
similar argument as above using the universal property of the internal hom and Yoneda
lemma allows us to prove that RHom𝛼 (𝔞,RHom𝛼 (𝔟, 𝔠)) � RHom𝛼 (𝔡, 𝔠), showing that
𝔡 = 𝔞 ⊗L

𝛼 𝔟 as desired. �

5.2. Tensor product of 𝛼-cocontinuous derived dg categories.

Proposition 5.6. Let 𝔞, 𝔟 be two homotopically 𝛼-cocomplete small dg categories. Then,
we have that

(62) D𝛼 (𝔞) � D𝛼 (𝔟) � D𝛼 (𝔞 ⊗L
𝛼 𝔟)

in Hqewg.
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Proof. We have that:
RHomc (D𝛼 (𝔞),RHomc (D𝛼 (𝔟), C)) � RHom𝛼 (𝔞,RHom𝛼 (𝔟, C))

� RHom𝛼 (𝔞 ⊗L
𝛼 𝔟, C)

� RHomc (D𝛼 (𝔞 ⊗L
𝛼 𝔟), C)

for every well generated dg category C, where the first isomorphism comes from Proposi-
tion 3.28 together with Theorem 3.31, the second isomorphism follows from Theorem 5.5
and the last isomorphism from Proposition 3.28. This concludes the argument. �

Corollary 5.7. The tensor product of two 𝛼-compactly generated dg categories is again
𝛼-compactly generated.

Proof. The theorem follows from the enhanced Gabriel-Popescu theorem (Theorem 3.17)
and Proposition 5.6 above. �
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